Plastic,renowned for its versatility,durability,and cost-effectiveness,is indispensable in modern society.Nevertheless,the annual production of nearly 400 million tons of plastic,coupled with a recycling rate of only ...Plastic,renowned for its versatility,durability,and cost-effectiveness,is indispensable in modern society.Nevertheless,the annual production of nearly 400 million tons of plastic,coupled with a recycling rate of only 9%,has led to a monumental environmental crisis.Plastic recycling has emerged as a vital response to this crisis,offering sustainable solutions to mitigate its environmental impact.Among these recycling efforts,plastic upcycling has garnered attention,which elevates discarded plastics into higher-value products.Here,electrocatalytic and photoelectrocatalytic treatments stand at the forefront of advanced plastic upcycling.Electrocatalytic or photoelectrocatalytic treatments involve chemical reactions that facilitate electron transfer through the electrode/electrolyte interface,driven by electrical or solar energy,respectively.These methods enable precise control of chemical reactions,harnessing potential,current density,or light to yield valuable chemical products.This review explores recent progress in plastic upcycling through electrocatalytic and photoelectrocatalytic pathways,offering promising solutions to the plastic waste crisis and advancing sustainability in the plastics industry.展开更多
The ethanol electro-reforming process was studied over PtRu/C catalysts synthesized by the modified polyol method with different compositions.In particular,this work reports the influence of anodic Pt:Ru ratio(5:1,2:1...The ethanol electro-reforming process was studied over PtRu/C catalysts synthesized by the modified polyol method with different compositions.In particular,this work reports the influence of anodic Pt:Ru ratio(5:1,2:1 and 1:2)on the organic product distribution(acetaldehyde,acetic acid and ethyl acetate)and pure hydrogen generation at different current densities operation levels.Physicochemical characterization of the catalysts was made by X-ray diffraction(XRD),temperature-programmed reduction(TPR)and N_(2) adsorption-desorption measurements.XRD patterns showed that Ru is introduced into the Pt structure,forming an alloy between both metals.Also,the degree of alloy was higher by increasing the Ru amounts.From TPR profiles Pt was found to be properly reduced while Ru was both in metallic state and forming RuO2.The electrochemical behaviour of each catalyst towards ethanol electroreforming process was investigated through electrochemical techniques in a half cell and a single proton exchange membrane(PEM)cell systems.An intermediate Pt:Ru ratio was found to result in high current density and electrochemical surface area(ECSA)values along with lower amounts of adsorbed species.Also,Ru addition seems to diminish the degree of degradation of the catalyst.Based on characterization and in agreement with essays carried out in a PEM cell at mild conditions(80℃ and 1 atm),PtRu/C 2:1 anode provided the best electrocatalytic results in terms of current density(740 mA cm^(-2)),hydrogen production and selectivity toward acetic acid(up to 15%apart from acetaldehyde and ethyl acetate)while requiring the lowest energy consumption.展开更多
The overuse and ineffective management of plastics have led to significant environmental pollution. Catalytic upcycling into value-added chemicals has emerged as a promising solution. This review provides a comprehens...The overuse and ineffective management of plastics have led to significant environmental pollution. Catalytic upcycling into value-added chemicals has emerged as a promising solution. This review provides a comprehensive overview of recent advances in catalytic upcycling, focusing on the cleavage of chemical bonds such as carbon-carbon (C-C), carbon-oxygen (C-O), and carbon-hydrogen (C-H) in plastics. It systematically discusses plastics conversion via electrocatalysis, thermal catalysis, and photocatalysis. Additionally, it explores the conversion of plastics into value-added chemicals and functional polymers. The review also addresses the challenges in this field and aims to offer insights for developing sustainable and effective plastics upcycling technologies.展开更多
The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,bi...The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,birch,etc.),Camellia wastes contain diverse bioactive substances in addition to the abundant lignocellulosic components,and thus,the biorefinery utilization of C.oleifera processing byproducts involves complicated processing technologies.This reviewfirst summarizes various technologies for extracting and converting the main components in C.oleifera oil processing byproducts into value-added chemicals and biobased materials,as well as their potential applications.Microwave,ultrasound,and Soxhlet extractions are compared for the extraction of functional bioactive components(tannin,flavonoid,saponin,etc.),while solvothermal conversion and pyrolysis are discussed for the conversion of lignocellulosic components into value-added chemicals.The application areas of these chemicals according to their properties are introduced in detail,including utilizing antioxidant and anti-in-flammatory properties of the bioactive substances for the specific application,as well as drop-in chemicals for the substitution of unrenewable fossil fuel-derived products.In addition to chemical production,biochar fabricated from COS and its applications in thefields of adsorption,supercapacitor,soil remediation and wood composites are comprehensively reviewed and discussed.Finally,based on the compositions and structural characteristics of C.oleifera byproducts,the development of full-component valorization strategies and the expansion of the appli-cationfields are proposed.展开更多
Microalgae have been considered as an efficient microorganism for wastewater treatment with simultaneously bioenergy and high value-added compounds production.However,the high energy cost associated with complicated b...Microalgae have been considered as an efficient microorganism for wastewater treatment with simultaneously bioenergy and high value-added compounds production.However,the high energy cost associated with complicated biorefinery(e.g.microalgae cultivation,harvesting,drying,extraction,conversion,and purification)is a critical challenge that inhibits its large-scale application.Among different nutrition(e.g.carbon,nitrogen and phosphorous)sources,food processing wastewater is a relative safe and suitable one for microalgae cultivation due to its high organic content and low toxicity.In this review,the characteristic of different food wastewater is summarized and compared.The potential routes of value-added products(i.e.biofuel,pigment,polysaccharide,and amino acid)production along with wastewater purification are introduced.The existing challenges(e.g.biorefinery cost,efficiency and mechanism)of microalgal-based wastewater treatment are also discussed.The prospective of microalgae-based food processing wastewater treatment strategies(such as microalgae-bacteria consortium,poly-generation of bioenergy and value-added products)is forecasted.It can be observed that food wastewater treatment by microalgae could be a promising strategy to commercially realize waste source reduce,conversion and reutilization.展开更多
Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy...Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.展开更多
Solar energy utilization has drawn attention due to ever-increasing environmental and energy issues.Photoelectrochemical(PEC)and photocatalytic(PC)water splitting for hydrogen production,which is the most popular and ...Solar energy utilization has drawn attention due to ever-increasing environmental and energy issues.Photoelectrochemical(PEC)and photocatalytic(PC)water splitting for hydrogen production,which is the most popular and well-established solar-to-chemical conversion process,has been studied thoroughly to date but is now facing limitations related to low conversion efficiency.To resolve this issue,research in PEC cells or photocatalysts has recently aimed to produce alternative value-added chemicals by modifying their redox reactions,which potentially enables high economic reward to compensate for the low efficiency.Here,various kinds of redox reactions that decouple classic water splitting reactions to produce value-added chemicals via PEC and PC processes are introduced.Successful coupling of CO_(2) reduction,O_(2) reduction and organic synthesis with either water oxidation or water reduction is comprehensively discussed from the perspective of basic fundamental and product selectivity in terms of the band structure of materials,cocatalyst design,and thermodynamics and kinetics of the reactions.Throughout the review,future challenges and opportunities are suggested with respect to the redesigned artificial synthesis,which might be an alternative development for the commercialization of PEC or PC value-added chemical production technologies in the near future.展开更多
From Jan. 1st, 2009, the value-added tax transformation will be performed in all industries around the country. Based on value-added tax types and retrospection of reform practices, this article analyzes the backgroun...From Jan. 1st, 2009, the value-added tax transformation will be performed in all industries around the country. Based on value-added tax types and retrospection of reform practices, this article analyzes the background of the national value-added tax transformation and points out the influence of full implementation of the value-added tax transformation on various enterprises.展开更多
Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence d...Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence during depressurization,which will destroy the original force state of the production well.However,existing research on the stability of oil and gas production wells assumes the formation to be stable,and lacks consideration of the force exerted on the hydrate production well by formation subsidence caused by hydrate decomposition during production.To fill this gap,this paper proposes an analytical method for the dynamic evolution of the stability of hydrate production well considering the effects of hydrate decomposition.Based on the mechanical model of the production well,the basis for stability analysis has been proposed.A multi-field coupling model of the force state of the production well considering the effect of hydrate decomposition and formation subsidence is established,and a solver is developed.The analytical approach is verified by its good agreement with the results from the numerical method.A case study found that the decomposition of hydrate will increase the pulling-down force and reduce the supporting force,which is the main reason for the stability deterioration.The higher the initial hydrate saturation,the larger the reservoir thickness,and the lower the production pressure,the worse the stability or even instability.This work can provide a theoretical reference for the stability maintaining of the production well.展开更多
China's 40-year history of reform and opening-up includes rapid economic development as well as pollution and environmental governance.Using a four-stage division,this study explores the evolution trend and struct...China's 40-year history of reform and opening-up includes rapid economic development as well as pollution and environmental governance.Using a four-stage division,this study explores the evolution trend and structural decomposition of China's green value-added by constructing a non-competitive input-output table for environmental pollution from 1978 to 2017.The results indicate that pollution production coefficients increased continuously,and the green value-added index decreased.Additionally,the structural decomposition showed that investment and export were critical for economic growth during the period,though they were accompanied by serious pollution problems.The pollution generated by the raw material(represented by coal mining)and processing industries(represented by the textiles)were not controlled effectively.Pollution treatment for these industries should be strengthened in the future.The study has implications for government officials,policy makers,and academics.First,China should make green development a core concept for economic development,increase environmental pollution governance,develop a“green GDP,”incorporate the external costs of environmental pollution into the national economic accounting system.Second,it must change the investment and export structure as well as the traditional economic development pattern that exacerbates pollution.Specifically,the country should develop industries with low pollution and promote the export of industries producing high value-added products and increase green GDP per capita.Third,it should closely monitor the development of highly polluting industries.Upgrading technology to reduce pollution and strengthening pollution treatment will reduce the number of polluting industries and improve environmental governance efficiency.展开更多
Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen pro...Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.展开更多
Background Chinese indigenous pigs are popular with consumers for their juiciness,flavour and meat quality,but they have lower meat production.Insulin-like growth factor 2(IGF2) is a maternally imprinted growth factor...Background Chinese indigenous pigs are popular with consumers for their juiciness,flavour and meat quality,but they have lower meat production.Insulin-like growth factor 2(IGF2) is a maternally imprinted growth factor that promotes skeletal muscle growth by regulating cell proliferation and differentiation.A single nucleotide polymorphism(SNP) within intron 3 of porcine IGF2 disrupts a binding site for the repressor,zinc finger BED-type containing 6(ZBED6),leading to up-regulation of IGF2 and causing major effects on muscle growth,heart size,and backfat thickness.This favorable mutation is common in Western commercial pig populations,but absent in most Chinese indigenous pig breeds.To improve meat production of Chinese indigenous pigs,we used cytosine base editor 3(CBE3)to introduce IGF2 intron3-C3071T mutation into porcine embryonic fibroblasts(PEFs) isolated from a male Liang Guang Small Spotted pig(LGSS),and single-cell clones harboring the desired mutation were selected for somatic cell nuclear transfer(SCNT) to generate the founder line of IGF2^(T/T) pigs.Results We found the heterozygous progeny IGF2^(C/T) pigs exhibited enhanced expression of IGF2,increased lean meat by 18%-36%,enlarged loin muscle area by 3%-17%,improved intramuscular fat(IMF) content by 18%-39%,marbling score by 0.75-1,meat color score by 0.53-1.25,and reduced backfat thickness by 5%-16%.The enhanced accumulation of intramuscular fat in IGF2^(C/T) pigs was identified to be regulated by the PI3K-AKT/AMPK pathway,which activated SREBP1 to promote adipogenesis.Conclusions We demonstrated the introduction of IGF2-intron3-C3071T in Chinese LGSS can improve both meat production and quality,and first identified the regulation of IMF deposition by IGF2 through SREBP1 via the PI3KAKT/AMPK signaling pathways.Our study provides a further understanding of the biological functions of IGF2and an example for improving porcine economic traits through precise base editing.展开更多
Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-mi...Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons.展开更多
This article introduces the Push-to-talk over Cellular( PoC) service, a new mobile value-added service based on the IP Multimedia Subsystem (IMS). Its implementation scheme is discussed and its Session Initiation Prot...This article introduces the Push-to-talk over Cellular( PoC) service, a new mobile value-added service based on the IP Multimedia Subsystem (IMS). Its implementation scheme is discussed and its Session Initiation Protocol (SIP) signaling exchange flow is described. Target user groups are predicted based on the analysis of the strengths and weaknesses of the PoC service. The article purports that the PoC system could undoubtedly be used as a platform for new services such as multimedia messaging, instant messaging, presence, and picture receiving and sending. Just like the short message service, the PoC service will help the terminal vendors, equipment vendors, content providers and operators setup a win-for-all industrial value chain.展开更多
Estimation of domestic and overseas value-added of manufacturing sector is an important and difficult subject for the science-based evaluation of a country's trade interests under global value chain. Traditional HIY ...Estimation of domestic and overseas value-added of manufacturing sector is an important and difficult subject for the science-based evaluation of a country's trade interests under global value chain. Traditional HIY approach overestimates the domestic value- added of export. Although Koopman's method made certain improvements, it cannot utilize traditional I/O matrix and direct input coefficient matrix under the condition of incomplete information. By creating GAMS model, this paper addresses the above-mentioned problems and employs an improved model for the estimation of variations in domestic and overseas value-added of Chinese exports between 2002 and 2012. Our results indicate that by neglecting the export of processing trade, HIY approach overestimates the domestic value- added ratio of Chinese exports. As more imported intermediate inputs have been used in the export of processing trade, the estimation result of this paper have corrected deviations in the forecast of overseas value-added ratio and its tendencies based on HIY method Further analysis of specific factors of domestic value-added of export led to the discovery that the domestic value-added of export of processing trade and mixed trade is highly vulnerable to the impact of international capital inflow. It can be seen that the improved method for the estimation of value-added has indeed corrected the deviations in the estimation of China's value-added. In conclusion, China should accelerate the development of export of non- processing trade and trade in high-end services, and balance the relationship of export between local firms and foreign-funded firms, with a view to improving trade dependence and increasing the trade status of Chinese manufaeturing firms in global value chain.展开更多
Various land use and land cover(LULC)products have been produced over the past decade with the development of remote sensing technology.Despite the differences in LULC classification schemes,there is a lack of researc...Various land use and land cover(LULC)products have been produced over the past decade with the development of remote sensing technology.Despite the differences in LULC classification schemes,there is a lack of research on assessing the accuracy of their application to croplands in a unified framework.Thus,this study evaluated the spatial and area accuracies of cropland classification for four commonly used global LULC products(i.e.,MCD12Q1V6,GlobCover2009,FROM-GLC and GlobeLand30)based on the harmonised FAO criterion,and quantified the relationships between four factors(i.e.,slope,elevation,field size and crop system)and cropland classification agreement.The validation results indicated that MCD12Q1 and GlobeLand30 performed well in cropland classification regarding spatial consistency,with overall accuracies of 94.90 and 93.52%,respectively.The FROMGLC showed the worst performance,with an overall accuracy of 83.17%.Overlaying the cropland generated by the four global LULC products,we found the proportions of complete agreement and disagreement were 15.51 and 44.72% for the cropland classification,respectively.High consistency was mainly observed in the Northeast China Plain,the Huang-Huai-Hai Plain and the northern part of the Middle-lower Yangtze Plain,China.In contrast,low consistency was detected primarily on the eastern edge of the northern and semiarid region,the Yunnan-Guizhou Plateau and southern China.Field size was the most important factor for mapping cropland.For area accuracy,compared with China Statistical Yearbook data at the provincial scale,the accuracies of different products in descending order were:GlobeLand30,FROM-GLC,MCD12Q1,and GlobCover2009.The cropland classification schemes mainly caused large area deviations among the four products,and they also resulted in the different ranks of spatial accuracy and area accuracy among the four products.Our results can provide valuable suggestions for selecting cropland products at the national or provincial scale and help cropland mapping and reconstruction,which is essential for food security and crop management,so they can also contribute to achieving the Sustainable Development Goals issued by the United Nations.展开更多
Based on trade in value-added, this paper has estimated the revealed comparative advantage (RCA) of China's various manufacturing sectors between 1995 and 2011 and compared with the RCA indexes measured using conve...Based on trade in value-added, this paper has estimated the revealed comparative advantage (RCA) of China's various manufacturing sectors between 1995 and 2011 and compared with the RCA indexes measured using conventional aggregate accounting approach. Results indicate that: (1) the RCA index measured using conventional aggregate accounting approach has underestimated China's comparative advantage of labor-intensive sectors but overestimated China's comparative advantage in capital, knowledge and technology-intensive manufacturing sectors, giving rise to a serious misjudgment. (2) The RCA measured using value-added approach shows that in the industry chain layout of global manufacturing sectors, China's comparative advantage is still concentrated in labor-intensive manufacturing sectors but has signs of weakening; in capital, knowledge and technology-intensive sectors, China is yet to develop any significant comparative advantage; there are signs that China is developing comparative advantage in capital-intensive sectors yet China's comparative disadvantage in knowledge and technology-intensive sectors has no significant tendency to improve. This result not only helps correct the misjudgment of China's competitiveness in manufacturing sectors based on conventional aggregate accounting approach but offers important policy implications for setting strategic directions and policies for China's manufacturing transition and upgrade.展开更多
In order to promote the revitalization and development of rural areas and protect the property rights of farmers,it is necessary to explore the reasonable distribution ratio of land value-added income in collective op...In order to promote the revitalization and development of rural areas and protect the property rights of farmers,it is necessary to explore the reasonable distribution ratio of land value-added income in collective operating construction land.Under the existing land value-added income distribution model,the land value-added income obtained by the government is much greater than that of village collectives,and it is difficult for village collectives and farmers to enjoy greater benefits.This distribution model is not conducive to protecting the property rights of farmers.The results show that there was a positive correlation between land value-added income and land level,that is,the higher the land level was,the higher the value-added income and its ratio to the market transaction price were.According to calculation,the reasonable distribution ratio of the value-added income of collective operating construction land entering the market among the government,village collectives and farmers was 28.6%,51.1%,and 20.3%respectively.The actual land value-added income obtained by farmers was greatly improved compared with the current situation.In actual operation,this distribution mode has universal applicability.The reform of entering the market in the future also needs to raise the standards for entering the market,explore diversified interest protection channels,and strengthen the construction of rural collective management system.展开更多
The comprehensive benefit evaluation of the existing building energy efficient renovation project cannot be separated from the scientific and effective evaluation mechanism.Based on the value-added life perspective,th...The comprehensive benefit evaluation of the existing building energy efficient renovation project cannot be separated from the scientific and effective evaluation mechanism.Based on the value-added life perspective,this paper analyzes the implementation subject,standard,system and principle of the comprehensive benefit evaluation of the existing building energy efficient renovation project.It plans the process of comprehensive benefit evaluation,and builds a scientific and reasonable operation platform of evaluation system,with a view to promoting the effective implementation of the comprehensive benefit evaluation of existing building energy-saving retrofits.展开更多
The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil...The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(RS-2023-00302697,2022H1D3A3A01077254)。
文摘Plastic,renowned for its versatility,durability,and cost-effectiveness,is indispensable in modern society.Nevertheless,the annual production of nearly 400 million tons of plastic,coupled with a recycling rate of only 9%,has led to a monumental environmental crisis.Plastic recycling has emerged as a vital response to this crisis,offering sustainable solutions to mitigate its environmental impact.Among these recycling efforts,plastic upcycling has garnered attention,which elevates discarded plastics into higher-value products.Here,electrocatalytic and photoelectrocatalytic treatments stand at the forefront of advanced plastic upcycling.Electrocatalytic or photoelectrocatalytic treatments involve chemical reactions that facilitate electron transfer through the electrode/electrolyte interface,driven by electrical or solar energy,respectively.These methods enable precise control of chemical reactions,harnessing potential,current density,or light to yield valuable chemical products.This review explores recent progress in plastic upcycling through electrocatalytic and photoelectrocatalytic pathways,offering promising solutions to the plastic waste crisis and advancing sustainability in the plastics industry.
基金the Spanish Ministry of Economy and Competitiveness(projects CTQ2016-75491-R)for the financial support。
文摘The ethanol electro-reforming process was studied over PtRu/C catalysts synthesized by the modified polyol method with different compositions.In particular,this work reports the influence of anodic Pt:Ru ratio(5:1,2:1 and 1:2)on the organic product distribution(acetaldehyde,acetic acid and ethyl acetate)and pure hydrogen generation at different current densities operation levels.Physicochemical characterization of the catalysts was made by X-ray diffraction(XRD),temperature-programmed reduction(TPR)and N_(2) adsorption-desorption measurements.XRD patterns showed that Ru is introduced into the Pt structure,forming an alloy between both metals.Also,the degree of alloy was higher by increasing the Ru amounts.From TPR profiles Pt was found to be properly reduced while Ru was both in metallic state and forming RuO2.The electrochemical behaviour of each catalyst towards ethanol electroreforming process was investigated through electrochemical techniques in a half cell and a single proton exchange membrane(PEM)cell systems.An intermediate Pt:Ru ratio was found to result in high current density and electrochemical surface area(ECSA)values along with lower amounts of adsorbed species.Also,Ru addition seems to diminish the degree of degradation of the catalyst.Based on characterization and in agreement with essays carried out in a PEM cell at mild conditions(80℃ and 1 atm),PtRu/C 2:1 anode provided the best electrocatalytic results in terms of current density(740 mA cm^(-2)),hydrogen production and selectivity toward acetic acid(up to 15%apart from acetaldehyde and ethyl acetate)while requiring the lowest energy consumption.
基金the financial support of the National Natural Science Foundation of China(Nos.52173046,52473050,and 22275166)the Natural Science Foundation of Zhejiang Province(No.LZ21E030002)。
文摘The overuse and ineffective management of plastics have led to significant environmental pollution. Catalytic upcycling into value-added chemicals has emerged as a promising solution. This review provides a comprehensive overview of recent advances in catalytic upcycling, focusing on the cleavage of chemical bonds such as carbon-carbon (C-C), carbon-oxygen (C-O), and carbon-hydrogen (C-H) in plastics. It systematically discusses plastics conversion via electrocatalysis, thermal catalysis, and photocatalysis. Additionally, it explores the conversion of plastics into value-added chemicals and functional polymers. The review also addresses the challenges in this field and aims to offer insights for developing sustainable and effective plastics upcycling technologies.
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(Grant No.32201509)Hunan Science and Technology Xiaohe Talent Support Project(2022 TJ-XH 013)+6 种基金Science and Technology Innovation Program of Hunan Province(2022RC1156,2021RC2100)State Key Laboratory of Woody Oil Resource Utilization Common Key Technology Innovation for the Green Transformation of Woody Oil(XLKY202205)State Key Laboratory of Woody Oil Resource Utilization Project(2019XK2002)Key Research and Development Program of the State Forestry and Grassland Administration(GLM[2021]95)Hunan Forestry Outstanding Youth Project(XLK202108-1)Changsha Science and Technology Project(kq2202325,kq2107022)Science and Technology Innovation Leading Talent of Hunan Province(2020RC4026).
文摘The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,birch,etc.),Camellia wastes contain diverse bioactive substances in addition to the abundant lignocellulosic components,and thus,the biorefinery utilization of C.oleifera processing byproducts involves complicated processing technologies.This reviewfirst summarizes various technologies for extracting and converting the main components in C.oleifera oil processing byproducts into value-added chemicals and biobased materials,as well as their potential applications.Microwave,ultrasound,and Soxhlet extractions are compared for the extraction of functional bioactive components(tannin,flavonoid,saponin,etc.),while solvothermal conversion and pyrolysis are discussed for the conversion of lignocellulosic components into value-added chemicals.The application areas of these chemicals according to their properties are introduced in detail,including utilizing antioxidant and anti-in-flammatory properties of the bioactive substances for the specific application,as well as drop-in chemicals for the substitution of unrenewable fossil fuel-derived products.In addition to chemical production,biochar fabricated from COS and its applications in thefields of adsorption,supercapacitor,soil remediation and wood composites are comprehensively reviewed and discussed.Finally,based on the compositions and structural characteristics of C.oleifera byproducts,the development of full-component valorization strategies and the expansion of the appli-cationfields are proposed.
基金Supported by the National key Research and Development project(2016YFB0601003)National Natural Science Foundation of China(21878228 and31701526)+3 种基金Basic Research Fees of Universities and Colleges in Tianjin(2017KJ001)Youth Teacher Innovation Fund of Tianjin University of Science&Technology(2015LG26)Project Program of Key Laboratory of Food Nutrition and Safety,Ministry of Education,China(2018007)Open Project program of State Key Laboratory of Food Nutrition and Safety,Tianjin University of Science&Technology(SKLFNS-KF-201824).
文摘Microalgae have been considered as an efficient microorganism for wastewater treatment with simultaneously bioenergy and high value-added compounds production.However,the high energy cost associated with complicated biorefinery(e.g.microalgae cultivation,harvesting,drying,extraction,conversion,and purification)is a critical challenge that inhibits its large-scale application.Among different nutrition(e.g.carbon,nitrogen and phosphorous)sources,food processing wastewater is a relative safe and suitable one for microalgae cultivation due to its high organic content and low toxicity.In this review,the characteristic of different food wastewater is summarized and compared.The potential routes of value-added products(i.e.biofuel,pigment,polysaccharide,and amino acid)production along with wastewater purification are introduced.The existing challenges(e.g.biorefinery cost,efficiency and mechanism)of microalgal-based wastewater treatment are also discussed.The prospective of microalgae-based food processing wastewater treatment strategies(such as microalgae-bacteria consortium,poly-generation of bioenergy and value-added products)is forecasted.It can be observed that food wastewater treatment by microalgae could be a promising strategy to commercially realize waste source reduce,conversion and reutilization.
文摘Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.
基金Sungsoon Kim,Kwang Hee Kim and Cheoulwoo Oh contributed equally as cofirst authors.Kan Zhang acknowledges the support from NSFC(51802157,21902104)the Natural Science Foundation of Jiangsu Province of China(BZ2020063)Jong Hyeok Park acknowledges the support from the National Research Foundation(NRF)of Korea(2019R1A4A1029237,2021M3E6A1015823,2017M3A7B4041987).
文摘Solar energy utilization has drawn attention due to ever-increasing environmental and energy issues.Photoelectrochemical(PEC)and photocatalytic(PC)water splitting for hydrogen production,which is the most popular and well-established solar-to-chemical conversion process,has been studied thoroughly to date but is now facing limitations related to low conversion efficiency.To resolve this issue,research in PEC cells or photocatalysts has recently aimed to produce alternative value-added chemicals by modifying their redox reactions,which potentially enables high economic reward to compensate for the low efficiency.Here,various kinds of redox reactions that decouple classic water splitting reactions to produce value-added chemicals via PEC and PC processes are introduced.Successful coupling of CO_(2) reduction,O_(2) reduction and organic synthesis with either water oxidation or water reduction is comprehensively discussed from the perspective of basic fundamental and product selectivity in terms of the band structure of materials,cocatalyst design,and thermodynamics and kinetics of the reactions.Throughout the review,future challenges and opportunities are suggested with respect to the redesigned artificial synthesis,which might be an alternative development for the commercialization of PEC or PC value-added chemical production technologies in the near future.
文摘From Jan. 1st, 2009, the value-added tax transformation will be performed in all industries around the country. Based on value-added tax types and retrospection of reform practices, this article analyzes the background of the national value-added tax transformation and points out the influence of full implementation of the value-added tax transformation on various enterprises.
基金financially supported by the National Natural Science Foundation of China(Grant No.51890914)。
文摘Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence during depressurization,which will destroy the original force state of the production well.However,existing research on the stability of oil and gas production wells assumes the formation to be stable,and lacks consideration of the force exerted on the hydrate production well by formation subsidence caused by hydrate decomposition during production.To fill this gap,this paper proposes an analytical method for the dynamic evolution of the stability of hydrate production well considering the effects of hydrate decomposition.Based on the mechanical model of the production well,the basis for stability analysis has been proposed.A multi-field coupling model of the force state of the production well considering the effect of hydrate decomposition and formation subsidence is established,and a solver is developed.The analytical approach is verified by its good agreement with the results from the numerical method.A case study found that the decomposition of hydrate will increase the pulling-down force and reduce the supporting force,which is the main reason for the stability deterioration.The higher the initial hydrate saturation,the larger the reservoir thickness,and the lower the production pressure,the worse the stability or even instability.This work can provide a theoretical reference for the stability maintaining of the production well.
基金supported by the Key Project of National Social Science Foundation of China[Grant number:14AZD085],“Research on the Evolution Trend and Countermeasures of China's Economic Growth Quality under the New Normal Condition”the Project of National Natural Science Foundation of China[Grant number:71373106],“Research on the Transformation Dynamics of Industrial Added Value Rate and Policy Simulation:A Case Study of Manufacturing Industry in Yangtze River Delta.”。
文摘China's 40-year history of reform and opening-up includes rapid economic development as well as pollution and environmental governance.Using a four-stage division,this study explores the evolution trend and structural decomposition of China's green value-added by constructing a non-competitive input-output table for environmental pollution from 1978 to 2017.The results indicate that pollution production coefficients increased continuously,and the green value-added index decreased.Additionally,the structural decomposition showed that investment and export were critical for economic growth during the period,though they were accompanied by serious pollution problems.The pollution generated by the raw material(represented by coal mining)and processing industries(represented by the textiles)were not controlled effectively.Pollution treatment for these industries should be strengthened in the future.The study has implications for government officials,policy makers,and academics.First,China should make green development a core concept for economic development,increase environmental pollution governance,develop a“green GDP,”incorporate the external costs of environmental pollution into the national economic accounting system.Second,it must change the investment and export structure as well as the traditional economic development pattern that exacerbates pollution.Specifically,the country should develop industries with low pollution and promote the export of industries producing high value-added products and increase green GDP per capita.Third,it should closely monitor the development of highly polluting industries.Upgrading technology to reduce pollution and strengthening pollution treatment will reduce the number of polluting industries and improve environmental governance efficiency.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20213030040590)the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2021K1A4A8A01079455)。
文摘Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.
基金supported by the National Natural Science Foundation of China (3207269732030102)+2 种基金CARS-PIG-35R&D Programmes of Guangdong Province (2018B020203003)Laboratory of Lingnan Modern Agriculture Project (NZ2021006)。
文摘Background Chinese indigenous pigs are popular with consumers for their juiciness,flavour and meat quality,but they have lower meat production.Insulin-like growth factor 2(IGF2) is a maternally imprinted growth factor that promotes skeletal muscle growth by regulating cell proliferation and differentiation.A single nucleotide polymorphism(SNP) within intron 3 of porcine IGF2 disrupts a binding site for the repressor,zinc finger BED-type containing 6(ZBED6),leading to up-regulation of IGF2 and causing major effects on muscle growth,heart size,and backfat thickness.This favorable mutation is common in Western commercial pig populations,but absent in most Chinese indigenous pig breeds.To improve meat production of Chinese indigenous pigs,we used cytosine base editor 3(CBE3)to introduce IGF2 intron3-C3071T mutation into porcine embryonic fibroblasts(PEFs) isolated from a male Liang Guang Small Spotted pig(LGSS),and single-cell clones harboring the desired mutation were selected for somatic cell nuclear transfer(SCNT) to generate the founder line of IGF2^(T/T) pigs.Results We found the heterozygous progeny IGF2^(C/T) pigs exhibited enhanced expression of IGF2,increased lean meat by 18%-36%,enlarged loin muscle area by 3%-17%,improved intramuscular fat(IMF) content by 18%-39%,marbling score by 0.75-1,meat color score by 0.53-1.25,and reduced backfat thickness by 5%-16%.The enhanced accumulation of intramuscular fat in IGF2^(C/T) pigs was identified to be regulated by the PI3K-AKT/AMPK pathway,which activated SREBP1 to promote adipogenesis.Conclusions We demonstrated the introduction of IGF2-intron3-C3071T in Chinese LGSS can improve both meat production and quality,and first identified the regulation of IMF deposition by IGF2 through SREBP1 via the PI3KAKT/AMPK signaling pathways.Our study provides a further understanding of the biological functions of IGF2and an example for improving porcine economic traits through precise base editing.
基金supported by the National Natural Science Foundation of China (22008098, 21978156, 42002040)the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (21IRTSTHN004)+1 种基金the Program for Science & Technology Innovation Talents in Universities of Henan Province (22HASTIT008)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2022-K34)。
文摘Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons.
文摘This article introduces the Push-to-talk over Cellular( PoC) service, a new mobile value-added service based on the IP Multimedia Subsystem (IMS). Its implementation scheme is discussed and its Session Initiation Protocol (SIP) signaling exchange flow is described. Target user groups are predicted based on the analysis of the strengths and weaknesses of the PoC service. The article purports that the PoC system could undoubtedly be used as a platform for new services such as multimedia messaging, instant messaging, presence, and picture receiving and sending. Just like the short message service, the PoC service will help the terminal vendors, equipment vendors, content providers and operators setup a win-for-all industrial value chain.
基金Project of the National Natural Sciences Foundation"Study on Trade,Investment and Industrial Relocation Based on Value Chain for the Belt and Road Initiative"(Approval No.71441039)
文摘Estimation of domestic and overseas value-added of manufacturing sector is an important and difficult subject for the science-based evaluation of a country's trade interests under global value chain. Traditional HIY approach overestimates the domestic value- added of export. Although Koopman's method made certain improvements, it cannot utilize traditional I/O matrix and direct input coefficient matrix under the condition of incomplete information. By creating GAMS model, this paper addresses the above-mentioned problems and employs an improved model for the estimation of variations in domestic and overseas value-added of Chinese exports between 2002 and 2012. Our results indicate that by neglecting the export of processing trade, HIY approach overestimates the domestic value- added ratio of Chinese exports. As more imported intermediate inputs have been used in the export of processing trade, the estimation result of this paper have corrected deviations in the forecast of overseas value-added ratio and its tendencies based on HIY method Further analysis of specific factors of domestic value-added of export led to the discovery that the domestic value-added of export of processing trade and mixed trade is highly vulnerable to the impact of international capital inflow. It can be seen that the improved method for the estimation of value-added has indeed corrected the deviations in the estimation of China's value-added. In conclusion, China should accelerate the development of export of non- processing trade and trade in high-end services, and balance the relationship of export between local firms and foreign-funded firms, with a view to improving trade dependence and increasing the trade status of Chinese manufaeturing firms in global value chain.
基金supported by the National Key Research and Development Program of China(2022YFB3903503)the National Natural Science Foundation of China(U1901601)the Science and Technology Project of the Department of Education of Jiangxi Province,China(GJJ210541)。
文摘Various land use and land cover(LULC)products have been produced over the past decade with the development of remote sensing technology.Despite the differences in LULC classification schemes,there is a lack of research on assessing the accuracy of their application to croplands in a unified framework.Thus,this study evaluated the spatial and area accuracies of cropland classification for four commonly used global LULC products(i.e.,MCD12Q1V6,GlobCover2009,FROM-GLC and GlobeLand30)based on the harmonised FAO criterion,and quantified the relationships between four factors(i.e.,slope,elevation,field size and crop system)and cropland classification agreement.The validation results indicated that MCD12Q1 and GlobeLand30 performed well in cropland classification regarding spatial consistency,with overall accuracies of 94.90 and 93.52%,respectively.The FROMGLC showed the worst performance,with an overall accuracy of 83.17%.Overlaying the cropland generated by the four global LULC products,we found the proportions of complete agreement and disagreement were 15.51 and 44.72% for the cropland classification,respectively.High consistency was mainly observed in the Northeast China Plain,the Huang-Huai-Hai Plain and the northern part of the Middle-lower Yangtze Plain,China.In contrast,low consistency was detected primarily on the eastern edge of the northern and semiarid region,the Yunnan-Guizhou Plateau and southern China.Field size was the most important factor for mapping cropland.For area accuracy,compared with China Statistical Yearbook data at the provincial scale,the accuracies of different products in descending order were:GlobeLand30,FROM-GLC,MCD12Q1,and GlobCover2009.The cropland classification schemes mainly caused large area deviations among the four products,and they also resulted in the different ranks of spatial accuracy and area accuracy among the four products.Our results can provide valuable suggestions for selecting cropland products at the national or provincial scale and help cropland mapping and reconstruction,which is essential for food security and crop management,so they can also contribute to achieving the Sustainable Development Goals issued by the United Nations.
基金Key Project of National Social Sciences Foundation"Transition and Upgrade of China’s Economic Structure under Global Value Chain"(11 AZD 002)Project of China Postdoctoral Science Foundation"Study on the Promotional Effect of Trade in Services on the Improvement of Status of China’s Yangtze River Delta Region in International Division of Labor"(Approval No.2013 M530809)
文摘Based on trade in value-added, this paper has estimated the revealed comparative advantage (RCA) of China's various manufacturing sectors between 1995 and 2011 and compared with the RCA indexes measured using conventional aggregate accounting approach. Results indicate that: (1) the RCA index measured using conventional aggregate accounting approach has underestimated China's comparative advantage of labor-intensive sectors but overestimated China's comparative advantage in capital, knowledge and technology-intensive manufacturing sectors, giving rise to a serious misjudgment. (2) The RCA measured using value-added approach shows that in the industry chain layout of global manufacturing sectors, China's comparative advantage is still concentrated in labor-intensive manufacturing sectors but has signs of weakening; in capital, knowledge and technology-intensive sectors, China is yet to develop any significant comparative advantage; there are signs that China is developing comparative advantage in capital-intensive sectors yet China's comparative disadvantage in knowledge and technology-intensive sectors has no significant tendency to improve. This result not only helps correct the misjudgment of China's competitiveness in manufacturing sectors based on conventional aggregate accounting approach but offers important policy implications for setting strategic directions and policies for China's manufacturing transition and upgrade.
文摘In order to promote the revitalization and development of rural areas and protect the property rights of farmers,it is necessary to explore the reasonable distribution ratio of land value-added income in collective operating construction land.Under the existing land value-added income distribution model,the land value-added income obtained by the government is much greater than that of village collectives,and it is difficult for village collectives and farmers to enjoy greater benefits.This distribution model is not conducive to protecting the property rights of farmers.The results show that there was a positive correlation between land value-added income and land level,that is,the higher the land level was,the higher the value-added income and its ratio to the market transaction price were.According to calculation,the reasonable distribution ratio of the value-added income of collective operating construction land entering the market among the government,village collectives and farmers was 28.6%,51.1%,and 20.3%respectively.The actual land value-added income obtained by farmers was greatly improved compared with the current situation.In actual operation,this distribution mode has universal applicability.The reform of entering the market in the future also needs to raise the standards for entering the market,explore diversified interest protection channels,and strengthen the construction of rural collective management system.
文摘The comprehensive benefit evaluation of the existing building energy efficient renovation project cannot be separated from the scientific and effective evaluation mechanism.Based on the value-added life perspective,this paper analyzes the implementation subject,standard,system and principle of the comprehensive benefit evaluation of the existing building energy efficient renovation project.It plans the process of comprehensive benefit evaluation,and builds a scientific and reasonable operation platform of evaluation system,with a view to promoting the effective implementation of the comprehensive benefit evaluation of existing building energy-saving retrofits.
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFE0106500)Jiangsu Science Fund for Distinguished Young Scholars(Grant No.BK20200040)。
文摘The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.