期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dynamic friction modelling and parameter identification for electromagnetic valve actuator 被引量:6
1
作者 SHAO Da XU Si-chuan DU Ai-min 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第12期3004-3020,共17页
A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear cont... A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear continuous switch function.The proposed new friction model solves the implementation problems with the traditional LuGre model at high speeds.An improved artificial fish swarm algorithm(IAFSA)method which combines the chaotic search and Gauss mutation operator into traditional artificial fish swarm algorithm is used to identify the parameters in the proposed modified LuGre friction model.The steady state response experiments and dynamic friction experiments are implemented to validate the effectiveness of IAFSA algorithm.The comparisons between the measured dynamic friction forces and the ones simulated with the established mathematic friction model at different frequencies and magnitudes demonstrate that the proposed modified LuGre friction model can give accurate simulation about the dynamic friction characteristics existing in the electromagnetic valve actuator system.The presented modelling and parameter identification methods are applicable for many other high-speed mechanical systems with friction. 展开更多
关键词 LuGre friction model artificial fish swarm algorithm Gauss mutation chaotic search parameter identification electromagnetic valve actuator
下载PDF
Closed Loop Hydraulic System and Its Effect on Actuator Design
2
作者 Karan Sotoodeh 《Journal of Marine Science and Application》 CSCD 2021年第2期333-342,共10页
Hydraulic systems provide a clean and stable supply of hydraulic fluid for subsea valves and actuators installed on the subsea bed in subsea production systems.Subsea control systems are used for contemporary subsea f... Hydraulic systems provide a clean and stable supply of hydraulic fluid for subsea valves and actuators installed on the subsea bed in subsea production systems.Subsea control systems are used for contemporary subsea fields instead of installing the control system on topside.Although all-electric subsea systems are state-of-the-art with benefits such as health,safety,and environment improvement,as well as efficiency and lower cost,hydraulic systems are still used for the development of many subsea fields.One of the main questions in the selection of a subsea hydraulic field is whether to choose an open or closed loop hydraulic system.The main characteristic of an open loop hydraulic system is that the hydraulic fluid is discharged into the marine environment during the actuation of the subsea valves.Conversely,the hydraulic fluid is returned to the topside facilities through an umbilical system in a closed loop system.Given that closed loop systems are more eco-friendly,the main question in this research is to examine the effect of the actuator connection of the closed loop system on actuator design.Two cases of actuated valves connected to a closed loop system are analyzed in this paper.The first is a 71/16-in.subsea slab gate valve in the pressure class of 517 bar with a linear spring return fail-safe close(FSC)actuator located on a manifold branch.The data indicates that the piston rod and cylinder diameter of the FSC linear actuator should be increased by some millimeters due to the accumulation of hydraulic oil at the bottom of the actuator.The hydraulic oil in the closed loop system helps in closing the actuator and spring force,so the spring constant and torque should be reduced as a result.The second case involves a 16-in.subsea ball valve in the pressure class of 517 bar with a double-acting fail-as-is rack and pinion actuator.The conclusion in this case is to avoid making any change in the design of double-acting actuator in connection to the closed loop system. 展开更多
关键词 Subsea Hydraulic system valves and actuators Closed loop hydraulic Hydraulic actuators actuators design modification Emission reduction
下载PDF
Simulation and experimental study of electro-pneumatic valve used in air-powered engine 被引量:10
3
作者 Ping-lu CHEN Xiao-li YU Lin LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第3期377-383,共7页
To evaluate the performance of newly designed electro-pneumatic valves (EPVs) for the air-powered engine (APE) and study laws of parameters affecting them, a simulation model was established based on the thermodynamic... To evaluate the performance of newly designed electro-pneumatic valves (EPVs) for the air-powered engine (APE) and study laws of parameters affecting them, a simulation model was established based on the thermodynamics and mechanics theories. Experiments were set up to determine the instantaneous effective orifice area of solenoid valve by the constant volume discharge method. The simulation model was also validated by comparing the measured displacement curve with the simulated displacement curve of the valve in the pressure of 0.16 and 0.49 MPa. Simulation and experimental results showed that maximum working frequency of the designed EPV could reach 30 Hz corresponding to 2000 r/min of engine rotating speed. Based on simulation results, impacts of temperature and pressure of control air on delay time, full opening/closing time and seating velocity of EPV were analyzed. The simulation model could also act as EPV simulation prototype in designing the air exchange control system of APE. 展开更多
关键词 PNEUMATIC Variable valve actuation (VVA) Air-powered engine (APE) Simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部