In order to overcome the low precision and weak applicability problems of the current municipal water network state simulation model, the water network structure is studied. Since the telemetry system has been applied...In order to overcome the low precision and weak applicability problems of the current municipal water network state simulation model, the water network structure is studied. Since the telemetry system has been applied increasingly in the water network, and in order to reflect the network operational condition more accurately, a new water network macroscopic model is developed by taking the auto-control adjusting valve opening state into consideration. Then for highly correlated or collinear independent variables in the model, the partial least squares (PLS) regression method provides a model solution which can distinguish between the system information and the noisy data. Finally, a hypothetical water network is introduced for validating the model. The simulation results show that the relative error is less than 5.2%, indicating that the model is efficient and feasible, and has better generalization performance.展开更多
基金Supported by Tianjin Natural Science Foundation( No. 003611611).
文摘In order to overcome the low precision and weak applicability problems of the current municipal water network state simulation model, the water network structure is studied. Since the telemetry system has been applied increasingly in the water network, and in order to reflect the network operational condition more accurately, a new water network macroscopic model is developed by taking the auto-control adjusting valve opening state into consideration. Then for highly correlated or collinear independent variables in the model, the partial least squares (PLS) regression method provides a model solution which can distinguish between the system information and the noisy data. Finally, a hypothetical water network is introduced for validating the model. The simulation results show that the relative error is less than 5.2%, indicating that the model is efficient and feasible, and has better generalization performance.