Vanadium dioxide(VO_(2))is a strongly correlated material,and it has become known due to its sharp metal-insulator transition(MIT)near room temperature.Understanding the thermal properties and their change across MIT ...Vanadium dioxide(VO_(2))is a strongly correlated material,and it has become known due to its sharp metal-insulator transition(MIT)near room temperature.Understanding the thermal properties and their change across MIT of VO_(2)thin film is important for the applications of this material in various devices.Here,the changes in thermal conductivity of epitaxial and polycrystalline VO_(2)thin film across MIT are probed by the time-domain thermoreflectance(TDTR)method.The measurements are performed in a direct way devoid of deposition of any metal thermoreflectance layer on the VO_(2)film to attenuate the impact from extra thermal interfaces.It is demonstrated that the method is feasible for the VO_(2)films with thickness values larger than 100 nm and beyond the phase transition region.The observed reasonable thermal conductivity change rates across MIT of VO_(2)thin films with different crystal qualities are found to be correlated with the electrical conductivity change rate,which is different from the reported behavior of single crystal VO_(2)nanowires.The recovery of the relationship between thermal conductivity and electrical conductivity in VO_(2)film may be attributed to the increasing elastic electron scattering weight,caused by the defects in the film.This work demonstrates the possibility and limitation of investigating the thermal properties of VO_(2)thin films by the TDTR method without depositing any metal thermoreflectance layer.展开更多
The stoichiometric vanadium(IV) oxide thin films were obtained by controlling the temperature, time and pressure of annealing. The thermochromic phase transition and the IR thermochromic property of 400 nm and 900 n...The stoichiometric vanadium(IV) oxide thin films were obtained by controlling the temperature, time and pressure of annealing. The thermochromic phase transition and the IR thermochromic property of 400 nm and 900 nm VO2 thin films in the 7.5 μm-14 μm region were discussed. The derived VO2 thin film samples were characterized by Raman, XRD, XPS, AFM, SEM, and DSC. The resistance and infrared emissivity of VO2 thin films under different temperature were measured, and the thermal images of films were obtained using infrared imager. The results show that the VO2 thin film annealed at 550 ℃ for 10 hours through aqueous sol-gel process is pure and uniform. The 900 nm VO2 thin film exhibits better IR thermochromic property than the 400 nm VO2 thin film. The resistance of 900 nm VO2 film can change by 4 orders of magnitude and the emissivity can change by 0.6 during the phase transition, suggesting the outstanding IR thermochromic property. The derived VO2 thin film can control its infrared radiation intensity and lower its apparent temperature actively when the real temperature increases, which may be applied in the field of energy saving, thermal control and camouflage.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61825102,51872038,and 52021001)the“111”Project,China(Grant No.B18011).
文摘Vanadium dioxide(VO_(2))is a strongly correlated material,and it has become known due to its sharp metal-insulator transition(MIT)near room temperature.Understanding the thermal properties and their change across MIT of VO_(2)thin film is important for the applications of this material in various devices.Here,the changes in thermal conductivity of epitaxial and polycrystalline VO_(2)thin film across MIT are probed by the time-domain thermoreflectance(TDTR)method.The measurements are performed in a direct way devoid of deposition of any metal thermoreflectance layer on the VO_(2)film to attenuate the impact from extra thermal interfaces.It is demonstrated that the method is feasible for the VO_(2)films with thickness values larger than 100 nm and beyond the phase transition region.The observed reasonable thermal conductivity change rates across MIT of VO_(2)thin films with different crystal qualities are found to be correlated with the electrical conductivity change rate,which is different from the reported behavior of single crystal VO_(2)nanowires.The recovery of the relationship between thermal conductivity and electrical conductivity in VO_(2)film may be attributed to the increasing elastic electron scattering weight,caused by the defects in the film.This work demonstrates the possibility and limitation of investigating the thermal properties of VO_(2)thin films by the TDTR method without depositing any metal thermoreflectance layer.
文摘The stoichiometric vanadium(IV) oxide thin films were obtained by controlling the temperature, time and pressure of annealing. The thermochromic phase transition and the IR thermochromic property of 400 nm and 900 nm VO2 thin films in the 7.5 μm-14 μm region were discussed. The derived VO2 thin film samples were characterized by Raman, XRD, XPS, AFM, SEM, and DSC. The resistance and infrared emissivity of VO2 thin films under different temperature were measured, and the thermal images of films were obtained using infrared imager. The results show that the VO2 thin film annealed at 550 ℃ for 10 hours through aqueous sol-gel process is pure and uniform. The 900 nm VO2 thin film exhibits better IR thermochromic property than the 400 nm VO2 thin film. The resistance of 900 nm VO2 film can change by 4 orders of magnitude and the emissivity can change by 0.6 during the phase transition, suggesting the outstanding IR thermochromic property. The derived VO2 thin film can control its infrared radiation intensity and lower its apparent temperature actively when the real temperature increases, which may be applied in the field of energy saving, thermal control and camouflage.