This paper reports a study of the addition effects of either titanium or titanium and nitrogen of steel grade DIN 56NiCrMoV7 on mechanical properties. Three steel grades were produced in 30 kg-induction furnace, one c...This paper reports a study of the addition effects of either titanium or titanium and nitrogen of steel grade DIN 56NiCrMoV7 on mechanical properties. Three steel grades were produced in 30 kg-induction furnace, one conforms the chemical composition of conventional 56NiCrMoV7 while the other two produced steels were microalloyed by either titanium or titanium and nitrogen. The produced cast steel grades were reheated to 1150°C and hold for 2 hours, followed by forging process. The forging process was carried out in temperature range 950°C - 1100°C. Solution treatment of hot forged steels was conducted at 880°C, 850°C followed by air and oil quenching, respectively. Quenched steel samples of different steel grades were tempered at different temperatures in the range of 300°C to 650°C for 45 min. The hardness variations after tempering of the two modified steels comparing with the conventional 56NiCrMoV7 steel were studied. Microadditions of titanium or titanium and nitrogen were found to produce secondary hardening at 550°C to 575°C (45 min) with a hardness peak higher than that attained in the conventional 56NiCrMoV7 steel. The effect of titanium and nitrogen additions on phases formation was investigated by Thermo-Calc. SEM was used to confirm Thermo-Calc analysis. Interpretation between hardness and formed phases has been illustrated.展开更多
The microstructures and mechanical properties of 550 MPa grade lightweight high strength thin-walled H-beam steel were experimentally studied. The experimental results show that the microstructure of the air-cooled H-...The microstructures and mechanical properties of 550 MPa grade lightweight high strength thin-walled H-beam steel were experimentally studied. The experimental results show that the microstructure of the air-cooled H-beam steel sample is consisted of ferrite, pearlite and a small amount of granular bainites as well as fine and dispersive V(C,N) precipitates. The microstructure of the water-cooled steel sample is consisted of ferrite and bainite as well as a small amount of fine pearlites. The microstructure of the water-cooled sample is finer than that of the air-cooled sample with the average intercept size of the surface grains reaching to 3.5 gna. The finish rolling temperature of the thin-walled high strength H-beam steel is in the range of 750 ~C-850 ~C. The lower the finish rolling temperature and the faster the cooling rate, the finer the ferrite grains, the volume fraction of bainite is increased through water cooling process. Grain refinement strengthening and precipitation strengthening are used as major strengthening means to develop 550 MPa grade lightweight high strength thin- walled H-beam steel. Vanadium partially soluted in the matrix and contributes to the solution strengthening. The 550 MPa grade high-strength thin-walled H-beam steel could be developed by direct air cooling after hot rolling to fully meet the requirements of the target properties.展开更多
文摘This paper reports a study of the addition effects of either titanium or titanium and nitrogen of steel grade DIN 56NiCrMoV7 on mechanical properties. Three steel grades were produced in 30 kg-induction furnace, one conforms the chemical composition of conventional 56NiCrMoV7 while the other two produced steels were microalloyed by either titanium or titanium and nitrogen. The produced cast steel grades were reheated to 1150°C and hold for 2 hours, followed by forging process. The forging process was carried out in temperature range 950°C - 1100°C. Solution treatment of hot forged steels was conducted at 880°C, 850°C followed by air and oil quenching, respectively. Quenched steel samples of different steel grades were tempered at different temperatures in the range of 300°C to 650°C for 45 min. The hardness variations after tempering of the two modified steels comparing with the conventional 56NiCrMoV7 steel were studied. Microadditions of titanium or titanium and nitrogen were found to produce secondary hardening at 550°C to 575°C (45 min) with a hardness peak higher than that attained in the conventional 56NiCrMoV7 steel. The effect of titanium and nitrogen additions on phases formation was investigated by Thermo-Calc. SEM was used to confirm Thermo-Calc analysis. Interpretation between hardness and formed phases has been illustrated.
基金Funded by the "11th Five" National Science and Technology Support Project(No.2006BAE03A13)
文摘The microstructures and mechanical properties of 550 MPa grade lightweight high strength thin-walled H-beam steel were experimentally studied. The experimental results show that the microstructure of the air-cooled H-beam steel sample is consisted of ferrite, pearlite and a small amount of granular bainites as well as fine and dispersive V(C,N) precipitates. The microstructure of the water-cooled steel sample is consisted of ferrite and bainite as well as a small amount of fine pearlites. The microstructure of the water-cooled sample is finer than that of the air-cooled sample with the average intercept size of the surface grains reaching to 3.5 gna. The finish rolling temperature of the thin-walled high strength H-beam steel is in the range of 750 ~C-850 ~C. The lower the finish rolling temperature and the faster the cooling rate, the finer the ferrite grains, the volume fraction of bainite is increased through water cooling process. Grain refinement strengthening and precipitation strengthening are used as major strengthening means to develop 550 MPa grade lightweight high strength thin- walled H-beam steel. Vanadium partially soluted in the matrix and contributes to the solution strengthening. The 550 MPa grade high-strength thin-walled H-beam steel could be developed by direct air cooling after hot rolling to fully meet the requirements of the target properties.