This paper simulates reactive magnetron-sputtering in constant current mode in a Vanadium-O2/Ar system equipped with a DC power supply by adopting both kinetics model and Berg's model. The target voltage during the r...This paper simulates reactive magnetron-sputtering in constant current mode in a Vanadium-O2/Ar system equipped with a DC power supply by adopting both kinetics model and Berg's model. The target voltage during the reactive sputtering has been investigated as a function of reactive gas flow. Both experiments and simulations demonstrate a hysteresis curve with respect to the oxygen supply. The time-dependent variation of the target mode is studied by measuring the target voltage for various reactive oxygen gas flows and pre-sputtering times. The pre- sputtering time increases with the increased initial target voltage. Furthermore, a corresponding time-dependent model simulating target voltage changes is also proposed. Based on these simulations, we find some relationships between the discharge voltage behaviour and the properties of the formed oxide. In this way, a better understanding of the target voltage changes during reactive sputtering can be achieved. We conclude that the presented theoretical models for parameter-dependent case and time-dependent case are in qualitative agreement with the experimental results and can be used to comprehend the target voltage behaviour in the deposition of vanadium oxide thin films.展开更多
High power pulsed magnetron sputtering(HPPMS), a novel physical vapor deposition technology, was applied to prepare vanadium films on aluminum alloy substrate in this paper. The influence of target–substrate dista...High power pulsed magnetron sputtering(HPPMS), a novel physical vapor deposition technology, was applied to prepare vanadium films on aluminum alloy substrate in this paper. The influence of target–substrate distance(Dt–s)(ranging from 8 to 20 cm) on phase structure, surface morphology, deposition rate, and corrosion resistance of vanadium films was investigated. The results show that the vanadium films are textured with a preferential orientation in the(111) direction except for that fabricated at 20 cm. With Dt–sincreasing, the intensity of(111) diffraction peak of the films decreases and there exists a proper distance leading to the minimum surface roughness of 0.65 nm. The deposition rate decreases with Dt–sincreasing. All the V-coated aluminum samples possess better corrosion resistance than the control sample. The sample fabricated at Dt–sof 12 cm demonstrates the best corrosion resistance with the corrosion potential increasing by 0.19 V and the corrosion current decreasing by an order of magnitude compared with that of the substrate. The samples gain further improvement in corrosion resistance after annealing, and if compared with that of annealed aluminum alloy, then the corrosion potential of the sample fabricated at 20 cm increases by 0.415 V and the corrosion current decreases by two orders of magnitude after annealed at 200 °C. If the annealing temperature further rises to 300 °C, then the corrosion resistance of samples increases less obviously than that of the control sample.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 60806021)
文摘This paper simulates reactive magnetron-sputtering in constant current mode in a Vanadium-O2/Ar system equipped with a DC power supply by adopting both kinetics model and Berg's model. The target voltage during the reactive sputtering has been investigated as a function of reactive gas flow. Both experiments and simulations demonstrate a hysteresis curve with respect to the oxygen supply. The time-dependent variation of the target mode is studied by measuring the target voltage for various reactive oxygen gas flows and pre-sputtering times. The pre- sputtering time increases with the increased initial target voltage. Furthermore, a corresponding time-dependent model simulating target voltage changes is also proposed. Based on these simulations, we find some relationships between the discharge voltage behaviour and the properties of the formed oxide. In this way, a better understanding of the target voltage changes during reactive sputtering can be achieved. We conclude that the presented theoretical models for parameter-dependent case and time-dependent case are in qualitative agreement with the experimental results and can be used to comprehend the target voltage behaviour in the deposition of vanadium oxide thin films.
基金financially supported by the National Natural Science Foundation of China (Nos. 51175118 and U1330110)the Open Foundation of Science and Technology on Surface Physics and Chemistry Laboratory (No. SPC201104)
文摘High power pulsed magnetron sputtering(HPPMS), a novel physical vapor deposition technology, was applied to prepare vanadium films on aluminum alloy substrate in this paper. The influence of target–substrate distance(Dt–s)(ranging from 8 to 20 cm) on phase structure, surface morphology, deposition rate, and corrosion resistance of vanadium films was investigated. The results show that the vanadium films are textured with a preferential orientation in the(111) direction except for that fabricated at 20 cm. With Dt–sincreasing, the intensity of(111) diffraction peak of the films decreases and there exists a proper distance leading to the minimum surface roughness of 0.65 nm. The deposition rate decreases with Dt–sincreasing. All the V-coated aluminum samples possess better corrosion resistance than the control sample. The sample fabricated at Dt–sof 12 cm demonstrates the best corrosion resistance with the corrosion potential increasing by 0.19 V and the corrosion current decreasing by an order of magnitude compared with that of the substrate. The samples gain further improvement in corrosion resistance after annealing, and if compared with that of annealed aluminum alloy, then the corrosion potential of the sample fabricated at 20 cm increases by 0.415 V and the corrosion current decreases by two orders of magnitude after annealed at 200 °C. If the annealing temperature further rises to 300 °C, then the corrosion resistance of samples increases less obviously than that of the control sample.