期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Boiling Heat Transfer on Porous Surfaces with Vapor Channels 被引量:1
1
作者 吴伟 杜建华 王补宣 《Tsinghua Science and Technology》 SCIE EI CAS 2002年第2期209-212,共4页
Boiling heat transfer on porous coated surfaces with vapor channels was investigated experimentally to determine the effects of the size and density of the vapor channels on the boiling heat transfer. Observations s... Boiling heat transfer on porous coated surfaces with vapor channels was investigated experimentally to determine the effects of the size and density of the vapor channels on the boiling heat transfer. Observations showed that bubbles escaping from the channels enhanced the heat transfer. Three regimes were identified: liquid flooding, bubbles in the channel and the bottom drying out region. The maximum heat transfer occurred for an optimum vapor channel density and the boiling heat transfer performance was increased if the channels were open to the bottom of the porous coating. 展开更多
关键词 porous media boiling enhancement vapor channels
原文传递
Research progress on the water vapor channel within the Yarlung Zsangbo Grand Canyon, China 被引量:1
2
作者 Xuelong Chen Yajing Liu +9 位作者 Yaoming Ma Xiangde Xu Xin Xu Luhan Li Dianbin Cao Qiang Zhang Gaili Wang Maoshan Li Siqiong Luo Xin Wang 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期10-15,共6页
The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Pl... The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Plateau(TP).This paper summarizes the scientific achievements obtained from the data collected by the INVC observation network and highlights the progress in investigating the development of heavy rainfall events associated with water vapor changes.The rain gauge network of the INVC can represent the impacts of the Yarlung Zsangbo Grand Canyon(YGC)topography on precipitation at the hourly scale.The microphysical characteristics of the precipitation in the YGC are different than those in the lowland area.The GPM-IMERG(Integrated MultisatellitE Retrievals for Global Precipitation Measurement)satellite precipitation data for the YGC region should be calibrated before they are used.The meridional water vapor flux through the YGC is more important than the zonal flux for the precipitation over the southeastern TP.The decreased precipitation around the YGC region is partly due to the decreased meridional water vapor flux passing through the YGC.High-resolution numerical models can benefit precipitation forecasting in this region by using a combination of specific schemes that capture the valley wind and water vapor flux along the valley floor. 展开更多
关键词 Water vapor channel Land-air interaction Mountian meteorology Extreme rainfall Observation network
下载PDF
Inter-comparison of the Infrared Channels of the Meteorological Imager Onboard COMS and Hyperspectral IASI Data
3
作者 Dohyeong KIM Myoung-Hwan AHN Minjin CHOI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第7期979-990,共12页
The successful launch and commissioning of the first geostationary meteorological satellite of Korea has the potential to enhance earth observation capability over the Asia Pacific region. Although the specifications ... The successful launch and commissioning of the first geostationary meteorological satellite of Korea has the potential to enhance earth observation capability over the Asia Pacific region. Although the specifications of the payload, the mete- orological imager (MI), have been verified during both ground and in-orbit tests, there is the possibility of variation and/or degradation of data quality due to many different reasons, such as the accumulation of contaminants, the aging of instrument components, and unexpected external disturbance. Thus, for better utilization of MI data, it is imperative to continuously monitor and maintain the data quality. As a part of such activity, this study presents an inter-calibration, based on the Global Space-based Inter-Calibration System (GSICS), between the MI data and the high quality hyperspectral data from the In- frared Atmospheric Sounding Interferometer (IASI) of the Metop-A satellite. Both sets of data, acquired for three years from April 2011 to March 2014, are processed to prepare the matchup dataset, which is spatially collocated, temporally concurrent, angularly coincident, and spectrally comparable. The results show that the MI data are stable within the specifications and show no significant degradation during the study period. However, the water vapor channel shows a rather large bias value of -0.77 K, with a root-mean-square difference (RMSD) of around 1.1 K, which is thought to be due to the shift in the spectral response function. The shortwave channel shows a maximum RMSD of around 1.39 K, mainly due to the coarse digitization at the lower temperature. The inter-comparison results are re-checked through a sensitivity analysis with different sets of threshold values used for the matchup dataset. Based on this, we confirm that the overall quality of the MI data meets the user requirements and maintains the expected performance, although the water vapor channel requires further investigation. 展开更多
关键词 meteorological imager inter-comparison instrument long-term stability water vapor channel
下载PDF
STATISTICAL ANALYSIS OF SUMMER TROPICAL CYCLONE REMOTE PRECIPITATION EVENTS IN EAST ASIA FROM 2000 TO 2009 AND NUMERICAL SIMULATION 被引量:2
4
作者 丁治英 赵晓慧 +1 位作者 邢蕊 高勇 《Journal of Tropical Meteorology》 SCIE 2017年第1期37-46,共10页
Using 1°×1° final analysis(FNL) data from the National Centers for Environmental Prediction(NCEP),precipitation data from the Tropical Rainfall Measuring Mission(TRMM) and the best-track tropical cyclon... Using 1°×1° final analysis(FNL) data from the National Centers for Environmental Prediction(NCEP),precipitation data from the Tropical Rainfall Measuring Mission(TRMM) and the best-track tropical cyclone(TC)dataset provided by the Japan Meteorological Agency(JMA) for June-August of 2000-2009, we comprehensively consider the two factors low-level moisture channel and interaction between TCs and mid-latitude systems and implement a statistical analysis of remote precipitation in East Asia to the north of 0° and to the west of 150° E. 48 cases of remote precipitation occurred in this period, which are categorized into five classes. After a composite analysis of the different classes, the main systems at 850 h Pa and 500 h Pa that impact the remote precipitation are as follows:TC, mid-latitude trough, subtropical high and water vapor channel. In particular, the water vapor channel which usually connects with Indian monsoon has the most significant impact on remote heavy rainfall. Another important factor is the mid-latitude trough. The type of north trough/vortex-south TC remote precipitation events happen most frequently,accounting for 68.8% of the total incidence. Most remote precipitation events occur on the right side of the TC path(representing 71% of the total number). At 200 h Pa, the remote precipitation events usually occur on the right rear portion of a high-altitude jet stream, and there is an anti-cyclonic vortex to the east and west of the TCs. When there is no anti-cyclonic vortex to the east of the TC, the TC is relatively weak. When the remote precipitation occurs to the northwest of the TC and there is a trough in the northwest direction, the TC is relatively strong. Numerical experiments are carried out using Weather Research and Forecast(WRF) model. The results shows that the TC plays a main role in producing the heavy precipitation and results in the enhancement of precipitation by impacting the water vapor channel. 展开更多
关键词 tropical cyclone(TC) remote precipitation numerical simulation water vapor channel
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部