期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Influence of vapor pressure deficit on vegetation growth in China
1
作者 LI Chuanhua ZHANG Liang +3 位作者 WANG Hongjie PENG Lixiao YIN Peng MIAO Peidong 《Journal of Arid Land》 SCIE CSCD 2024年第6期779-797,共19页
Vapor pressure deficit(VPD)plays a crucial role in determining plant physiological functions and exerts a substantial influence on vegetation,second only to carbon dioxide(CO_(2)).As a robust indicator of atmospheric ... Vapor pressure deficit(VPD)plays a crucial role in determining plant physiological functions and exerts a substantial influence on vegetation,second only to carbon dioxide(CO_(2)).As a robust indicator of atmospheric water demand,VPD has implications for global water resources,and its significance extends to the structure and functioning of ecosystems.However,the influence of VPD on vegetation growth under climate change remains unclear in China.This study employed empirical equations to estimate the VPD in China from 2000 to 2020 based on meteorological reanalysis data of the Climatic Research Unit(CRU)Time-Series version 4.06(TS4.06)and European Centre for Medium-Range Weather Forecasts(ECMWF)Reanalysis 5(ERA-5).Vegetation growth status was characterized using three vegetation indices,namely gross primary productivity(GPP),leaf area index(LAI),and near-infrared reflectance of vegetation(NIRv).The spatiotemporal dynamics of VPD and vegetation indices were analyzed using the Theil-Sen median trend analysis and Mann-Kendall test.Furthermore,the influence of VPD on vegetation growth and its relative contribution were assessed using a multiple linear regression model.The results indicated an overall negative correlation between VPD and vegetation indices.Three VPD intervals for the correlations between VPD and vegetation indices were identified:a significant positive correlation at VPD below 4.820 hPa,a significant negative correlation at VPD within 4.820–9.000 hPa,and a notable weakening of negative correlation at VPD above 9.000 hPa.VPD exhibited a pronounced negative impact on vegetation growth,surpassing those of temperature,precipitation,and solar radiation in absolute magnitude.CO_(2) contributed most positively to vegetation growth,with VPD offsetting approximately 30.00%of the positive effect of CO_(2).As the rise of VPD decelerated,its relative contribution to vegetation growth diminished.Additionally,the intensification of spatial variations in temperature and precipitation accentuated the spatial heterogeneity in the impact of VPD on vegetation growth in China.This research provides a theoretical foundation for addressing climate change in China,especially regarding the challenges posed by increasing VPD. 展开更多
关键词 vapor pressure deficit(VPD) near-infrared reflectance of vegetation(NIRv) leaf area index(LAI) gross primary productivity(GPP) Climatic Research Unit(CRU)Time-Series version 4.06(TS4.06) European Centre for Medium-Range Weather Forecasts(ECMWF)Reanalysis 5(ERA-5) climate change
下载PDF
Clipping Effect on Growth and Plant Water Use Response to Diurnal Variation of Vapor Pressure Deficit in Cenchrus biflorus Roxb
2
作者 Moussa Oumarou Abdoulaye Issoufou Hassane Bil-Assanou +1 位作者 Soulé Moussa Mainassara Zaman-Allah 《Journal of Agricultural Chemistry and Environment》 2024年第2期183-191,共9页
Cenchrus biflorus called Karangiya in the Hausa language is an annual pastoral grass which is a valuable herbaceous fodder in dry land region in the context of climate change. However, little is known about the plant ... Cenchrus biflorus called Karangiya in the Hausa language is an annual pastoral grass which is a valuable herbaceous fodder in dry land region in the context of climate change. However, little is known about the plant water use under the effects of cut in West Africa Sahel like Niger where the plant is a multipurpose grass species. Therefore, this study investigated the impact of grazing (simulated by shoot cuts) on biomass production. Cenchrus biflorus Roxb was grown on field plots and in pots and subjected to shoot cuts at different levels (3 cm and 5 cm from soil surface). The effect of shoot cuts on drought tolerance was evaluated by assessing the response of transpiration to the diurnal variation of vapor pressure deficit (VPD). Results showed that the biomass production varied in response to shoot cuts depending on the culture system, and the level or frequency of cuts. The mean biomass production increased significantly especially in field plots for 5 cm cuts compared to those at 3 cm and the control treatment. In addition, transpiration was highly increased in response to the VPD increase. Shoot cuts significantly reduced transpiration, whatever the level, largely because they reduced leaf surface. We concluded that moderate grazing (cuts to 5cm) can improve biomass production and allow better adaptation to water deficit as they significantly reduced water loss through transpiration. The study recommends the cropping of the Cenchrus biflorus as climate solution as it performs better under water deficit for improving grazing resilience in Niger. 展开更多
关键词 Cenchrus biflorus BIOMASS vapor pressure deficit CUTTING GRAZING
下载PDF
Response of stomatal conductance of two tree species to vapor pressure deficit in three climate zones 被引量:4
3
作者 Jing LI XiaoMing LI 《Journal of Arid Land》 SCIE CSCD 2014年第6期771-781,共11页
Stomatal behavior is a central topic of plant ecophysiological research under global environmental change. However, the physiological mechanism controlling the response of stomata to vapor pressure deficit (VPD) or ... Stomatal behavior is a central topic of plant ecophysiological research under global environmental change. However, the physiological mechanism controlling the response of stomata to vapor pressure deficit (VPD) or relative humidity (RH) has been inadequately understood till now. In this study, responses of stomatal conduc- tance (gs) to VPD in two species of trees (Fraxinus chinensis Roxb., Populus alba L. var. pyramidalis Bge.)in three different climate zones (Jinan with typical warm humid/semi-humid climate, Urumqi with temperate continental arid climate and Turpan with extreme arid desert climate) were measured. Levels of two phytohormones (abscisic acid, ABA; indole-3-acetic acid, IAA) in the leaves of the two tree species at these three sites were also measured by high performance liquid chromatography. The results showed that the responses of gs to an increasing VPD in these two tree species at the three sites had peak curves which could be fitted with a Log Normal Model (gs=a.exp(-O.5(In(DIc)lb)2). The VPD/RH values corresponding to the maximum g, can be calculated using the fitting models for the two tree species in the three sites. We found that the calculated g, -VPD correlated nega- tively with relative air humidity in the three sites during the plant growth period (April to October 2010), which showed the values of g,-max-VPD were related to the climate conditions. The prevailing empirical stomatal model (Leuning model) and optimal stomatal behavior model could not properly simulate our measured data. The water use efficiency in the two tree species did not show obvious differences under three very different climatic conditions, but the highest gs, photosynthetic and transpiration rates occurred in P. alba var. of Turpan. The sensitivity in re- sponse of g~ to VPD in leaves of the two trees showed positive correlations with the concentration of ABA, which implied that ABA level could be used as an indicator of the sensitivity of stomatal response to VPD. Our results confirmed that the prediction of the response of gs to VPD might be incomplete in the two current popular models. Therefore, an improved g, model which is able to integrate the results is needed. Also, the stomatal response mechanism of single peak curves of g~ to VPD should be considered. 展开更多
关键词 abscisic acid relative humidity stomatal conductance stomatal model vapor pressure deficit
下载PDF
Spatio-temporal variation in transpiration responses of maize plants to vapor pressure deficit under an arid climatic condition 被引量:4
4
作者 ZHAO Wenzhi JI Xibin 《Journal of Arid Land》 SCIE CSCD 2016年第3期409-421,共13页
The transpiration rate of plant is physically controlled by the magnitude of the vapor pressure deficit(VPD) and stomatal conductance. A limited-transpiration trait has been reported for many crop species in differe... The transpiration rate of plant is physically controlled by the magnitude of the vapor pressure deficit(VPD) and stomatal conductance. A limited-transpiration trait has been reported for many crop species in different environments, including Maize(Zea mays L.). This trait results in restricted transpiration rate under high VPD, and can potentially conserve soil water and thus decrease soil water deficit. However, such a restriction on transpiration rate has never been explored in maize under arid climatic conditions in northwestern China. The objective of this study was to examine the transpiration rate of field-grown maize under well-watered conditions in an arid area at both leaf and whole plant levels, and therefore to investigate how transpiration rate responding to the ambient VPD at different spatial and temporal scales. The transpiration rates of maize at leaf and plant scales were measured independently using a gas exchange system and sapflow instrument, respectively. Results showed significant variations in transpiration responses of maize to VPD among different spatio-temporal scales. A two-phase transpiration response was observed at leaf level with a threshold of 3.5 k Pa while at the whole plant level, the daytime transpiration rate was positively associated with VPD across all measurement data, as was nighttime transpiration response to VPD at both leaf and whole plant level, which showed no definable threshold vapor pressure deficit, above which transpiration rate was restricted. With regard to temporal scale, transpiration was most responsive to VPD at a daily scale, moderately responsive at a half-hourly scale, and least responsive at an instantaneous scale. A similar breakpoint(about 3.0 k Pa) in response of the instantaneous leaf stomatal conductance and hourly canopy bulk conductance to VPD were also observed. At a daily scale, the maximum canopy bulk conductance occurred at a VPD about 1.7 k Pa. Generally, the responsiveness of stomatal conductance to VPD at the canopy scale was lower than that at leaf scale. These results indicate a temporal and spatial heterogeneity in how maize transpiration responses to VPD under arid climatic conditions. This could allow a better assessment of the possible benefits of using the maximum transpiration trait to improve maize drought tolerance in arid environment, and allow a better prediction of plant transpiration which underpin empirical models for stomatal conductance at different spatio-temporal scales in the arid climatic conditions. 展开更多
关键词 maize limited transpiration trait gas exchange sap flow stomatal conductance vapor pressure deficit
下载PDF
The decadal abrupt change in the global land vapor pressure deficit
5
作者 Mengqi CHENG Zhiyan ZUO +2 位作者 Zouxing LIN Qinglong YOU Huan WANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第7期1521-1534,共14页
The vapor pressure deficit(VPD) is an important variable used to characterize atmospheric aridity.This paper analyses the spatial and temporal characteristics of the decadal abrupt change(DAC) in the global land VPD a... The vapor pressure deficit(VPD) is an important variable used to characterize atmospheric aridity.This paper analyses the spatial and temporal characteristics of the decadal abrupt change(DAC) in the global land VPD after 1980 using monthly scale data from the Climatic Research Unit.The results show that 60.5% of the global land area underwent a significantly increased decadal abrupt change(IDAC) in the VPD,and the persistent IDAC of the VPD was obvious in the middle and low latitudes of Eurasia,Africa and parts of South America but not in central North America or Western Siberia.From 1980 to 2020,most regions experienced no more than two persistent IDACs,while more than two significant increases occurred mainly around the Mediterranean and in eastern South America.The persistent IDAC occurred relatively early in the middle and low latitudes of Eurasia,Africa,and eastern South America and after 2000 in the high latitude regions,Eastern Europe,and near the Qinghai-Tibet Plateau.The regions where the persistent IDAC lasted longer than 10 years mainly included North Africa,West Asia,eastern South America,and parts of East Asia,indicating that the persistent increases in atmospheric aridity in these regions were obvious.In general,the persistent IDAC that began in 1993–2000 was significantly more than that occurred in other periods and lasted longer than that before 1990,suggesting that the land area experiencing an abrupt increase has an expansion after the 1990s and that the role of water limitation in this persistent IDAC in Central Asia and most of China strengthened.In addition,the VPD showed another large-scale persistent IDAC over the global land region in 2009,indicating that global atmospheric aridity intensified over the last decade.At the same time,in a few global regions,the VPD has exhibited decreased decadal abrupt changes(DDACs) with durations shorter than 2 years. 展开更多
关键词 vapor pressure deficit Atmospheric aridity Decadal abrupt changes Spatial and temporal characteristics
原文传递
Spatial and Temporal Changes in Vapor Pressure Deficit and Their Impacts on Crop Yields in China during 1980–2008 被引量:2
6
作者 Shuai ZHANG Fulu TAO Zhao ZHANG 《Journal of Meteorological Research》 SCIE CSCD 2017年第4期800-808,共9页
Vapor pressure deficit(VPD) is a widely used measure of atmospheric water demand. It is closely related to crop evapotranspiration and consequently has major impacts on crop growth and yields. Most previous studies ... Vapor pressure deficit(VPD) is a widely used measure of atmospheric water demand. It is closely related to crop evapotranspiration and consequently has major impacts on crop growth and yields. Most previous studies have focused on the impacts of temperature, precipitation, and solar radiation on crop yields, but the impact of VPD is poorly understood. Here, we investigated the spatial and temporal changes in VPD and their impacts on yields of major crops in China from 1980 to 2008. The results showed that VPD during the growing period of rice, maize, and soybean increased by more than 0.10kPa(10 yr)^–1 in northeastern and southeastern China, although it increased the least during the wheat growing period. Increases in VPD had different impacts on yields for different crops and in different regions. Crop yields generally decreased due to increased VPD, except for wheat in southeastern China. Maize yield was sensitive to VPD in more counties than other crops. Soybean was the most sensitive and rice was the least sensitive to VPD among the major crops. In the past three decades, due to the rising trend in VPD, wheat, maize, and soybean yields declined by more than 10.0% in parts of northeastern China and the North China Plain, while rice yields were little affected. For China as a whole, the trend in VPD during 1980–2008 increased rice yields by 1.32%,but reduced wheat, maize, and soybean yields by 6.02%, 3.19%, and 7.07%, respectively. Maize and soybean in the arid and semi-arid regions in northern China were more sensitive to the increase in VPD. These findings highlight that climate change can affect crop growth and yield through increasing VPD, and water-saving technologies and agronomic management need to be strongly encouraged to adapt to ongoing climate change. 展开更多
关键词 AGRICULTURE climate change vapor pressure deficit EVAPOTRANSPIRATION water stress
原文传递
Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits 被引量:2
7
作者 Chunmei Gong Jiajia Wang +3 位作者 Congxia Hu Junhui Wang Pengbo Ning Juan Bai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第8期184-196,共13页
C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. ... C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf–air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate(A n) was enhanced as vapor pressure deficits increased. A close relationship between A n and stomatal conductance(g s) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase(PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme(NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme(NAD-ME) was higher.Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges. 展开更多
关键词 C4photosynthesis Gas exchange H.ammodendron H.scoparium Water stress vapor pressure deficit
原文传递
Higher plant photosynthetic capability in autumn responding to low atmospheric vapor pressure deficit
8
作者 Yawen Wang Wenfang Xu +8 位作者 Wenping Yuan Xiuzhi Chen Bingwei Zhang Lei Fan Bin He Zhongmin Hu Shuguang Liu Wei Liu Shilong Piao 《The Innovation》 2021年第4期74-81,共8页
It has been long established that the terrestrial vegetation in spring has stronger photosynthetic capability than in autumn.However,this study challenges this consensus by comparing photosynthetic capability of terre... It has been long established that the terrestrial vegetation in spring has stronger photosynthetic capability than in autumn.However,this study challenges this consensus by comparing photosynthetic capability of terrestrial vegetation between the spring and autumn seasons based on measurements of 100 in situ eddy covariance towers over global extratropical ecosystems.At the majority of these sites,photosynthetic capability,indicated by light use efficiency(LUE)and apparent quantum efficiency,is significantly higher in autumn than in spring,due to lower atmosphere vapor pressure deficit(VPD)at the same air temperature.Seasonal VPD differences also substantially explain the interannual variability of the differences in photosynthetic capability between spring and autumn.We further reveal that VPD in autumn is significantly lower than in spring over 74.14% of extratropical areas,based on a global climate dataset.In contrast,LUE derived from a data-driven vegetation production dataset is significantly higher in autumn in over 61.02% of extratropical vegetated areas.Six Earth system models consistently projected continuous larger VPD values in spring compared with autumn,which implies that the impacts on vegetation growth will long exist and should be adequately considered when assessing the seasonal responses of terrestrial ecosystems to future climate conditions. 展开更多
关键词 light use efficiency vapor pressure deficit vegetation index carbon cycle
原文传递
Growth plasticity of conifers did not avoid declining resilience to soil and atmospheric droughts during the 20th century
9
作者 Tong Zheng Jordi Martínez-Vilalta +4 位作者 Raúl García-Valdés Antonio Gazol J.Julio Camarero Changcheng Mu Maurizio Mencuccini 《Forest Ecosystems》 SCIE CSCD 2023年第2期238-251,共14页
Background:Plasticity in response to environmental drivers can help trees cope with droughts.However,our understanding of the importance of plasticity and physiological adjustments in trees under global change is limi... Background:Plasticity in response to environmental drivers can help trees cope with droughts.However,our understanding of the importance of plasticity and physiological adjustments in trees under global change is limited.Methods:We used the International Tree-Ring Data Bank(ITRDB)to examine 20th century growth responses in conifer trees during(resistance)and following(resilience)years of severe soil and atmospheric droughts occurring in isolation or as compound events.Growth resilience indices were calculated using observed growth divided by expected growth to avoid spurious correlations,in which the expected values were obtained by the autoregressive moving average(ARIMA)model.We used high atmospheric vapour pressure deficit(VPD)to select years of atmospheric drought and low annual values of the Standardized Precipitation-Evapotranspiration Index(SPEI)to select years with soil drought.We acquired the sensitivities(i.e.,the slopes of the relationships)by fitting the resilience indices as a function of environmental drivers,and assessed how these sensitivities changed over time for different types of drought events using linear mixed models.We also checked whether plasticity in growth responses was sufficient to prevent long-term trends of growth reductions during or after severe droughts.We acknowledge that by focusing on the response of surviving trees from the ITRDB we are potentially biasing our results towards higher resilience,as stand level responses(e.g.,mortality)may result in lowered competition after the disturbance event.Results:Sensitivities of resilience to VPD and SPEI changed throughout the 20th century,with the directions of these changes often reversing in the second half of the century.For the 1961–2010 period,changing sensitivities had positive effects on resilience,especially following years of high-VPD and compound events,avoiding growth losses that would have occurred if sensitivities had remained constant.Despite sensitivity changes,resilience was still lower at the end of the 20th century compared to the beginning of the century.Conclusions:Future adjustments to low-SPEI and high-VPD events are likely to continue to compensate for the trends in climate only partially,leading to further generalized reductions in tree growth of conifers.An improved understanding of these plastic adjustments and their limits,as well as potential compensatory processes at the stand level,is needed to project forest responses to climate change. 展开更多
关键词 Tree rings GROWTH Drought vapor pressure deficit PLASTICITY ACCLIMATION
下载PDF
Hydraulic role in differential stomatal behaviors at two contrasting elevations in three dominant tree species of a mixed coniferous and broad-leaved forest in low subtropical China
10
作者 Liwei Zhu Tianyu Fu +4 位作者 Jie Du Weiting Hu Yanqiong Li Xiuhua Zhao Ping Zhao 《Forest Ecosystems》 SCIE CSCD 2023年第1期102-112,共11页
Quantifying the variation in stomatal behavior and functional traits of trees with elevation can provide a better understanding of the adaptative strategies to a changing climate. In this study, six water-and carbon-r... Quantifying the variation in stomatal behavior and functional traits of trees with elevation can provide a better understanding of the adaptative strategies to a changing climate. In this study, six water-and carbon-related functional traits were examined for three dominant tree species, Schima superba, Pinus massoniana and Castanopsis chinensis, in a mixed coniferous and broad-leaved forest at two elevations(70 and 360 m above sea level,respectively) in low subtropical China. We hypothesized that trees at higher elevations would develop more efficient strategies of stomatal regulations and greater water transport capacity to cope with more variable hydrothermal conditions than those at lower elevations. Results show that the hydraulic conductivity did not differ between trees at the two elevations, contrary to our expectation. The C. chinensis trees had greater values of leaf mass per unit area(LMA), and the S. superba and C. chinensis trees had greater values of wood density(WD),relative stem water content(RWC), and ratio of sapwood area to leaf area(Hv) at the 360-m elevation than at 70-m elevation. The mean canopy stomatal conductance was greater and more sensitive to vapor deficit pressure at360 m than at 70 m for both S. superba and C. chinensis, while stomatal sensitivity did not differ between the two contrasting elevations for P. massoniana. The midday leaf water potential(ψL) in P. massoniana was significantly more negative at 360 m than at 70 m, but did not vary with increasing elevation in both S. superba and C. chinensis.Variations in Hvcan be related to the differential stomatal behaviors between the two elevations. The variations of stomatal behavior and ψLwith elevation suggested the isohydric strategy for the two broad-leaved species and the anisohydric strategy for the conifer species. The species-specific differences in LMA, WD, RWC, and Hvbetween the two elevations may reflect conservative resource use strategies at the higher elevation. Our findings revealed a close relationship between hydraulic and stomatal behavior and may help better understand the functional responses of forests to changing environmental conditions. 展开更多
关键词 Sap flux Stomatal conductance Leaf water potential vapor pressure deficit ELEVATION Low subtropical China
下载PDF
Heat-tolerant maize for rainfed hot,dry environments in the lowland tropics:From breeding to improved seed delivery
11
作者 Pervez H.Zaidi Madhumal Thayil Vinayan +11 位作者 Sudha K.Nair Prakash H.Kuchanur Ramesh Kumar Shyam Bir Singh Mahendra Prasad Tripathi Ayyanagouda Patil Salahuddin Ahmed Aamir Hussain Atul Prabhakar Kulkarni Passang Wangmo Mitchell R.Tuinstra Boddupalli M.Prasanna 《The Crop Journal》 SCIE CSCD 2023年第4期986-1000,共15页
Climate change-induced heat stress combines two challenges:high day-and nighttime temperatures,and physiological water deficit due to demand-side drought caused by increase in vapor-pressure deficit.It is one of the m... Climate change-induced heat stress combines two challenges:high day-and nighttime temperatures,and physiological water deficit due to demand-side drought caused by increase in vapor-pressure deficit.It is one of the major factors in low productivity of maize in rainfed stress-prone environments in South Asia,affecting a large population of smallholder farmers who depend on maize for their sustenance and livelihoods.The International Maize and Wheat Improvement Center(CIMMYT)maize program in Asia,in partnership with public-sector maize research institutes and private-sector seed companies in South Asian countries,is implementing an intensive initiative for developing and deploying heat-tolerant maize that combines high yield potential with resilience to heat and drought stresses.With the integration of novel breeding tools and methods,including genomics-assisted breeding,doubled haploidy,fieldbased precision phenotyping,and trait-based selection,new maize germplasm with increased tolerance to heat stress is being developed for the South Asian tropics.Over a decade of concerted effort has resulted in the successful development and release of 20 high-yielding heat-tolerant maize hybrids in CIMMYT genetic backgrounds.Via public–private partnerships,eight hybrids are presently being deployed on over 50,000 ha in South Asian countries,including Bangladesh,Bhutan,India,Nepal,and Pakistan. 展开更多
关键词 Climate change DROUGHT Heat stress Lowland tropics MAIZE vapor pressure deficit
下载PDF
Response of Populus euphratica Oliv.sap flow to environmental variables for a desert riparian forest in the Heihe River Basin,Northwest China 被引量:11
12
作者 LI Wei SI Jianhua +1 位作者 YU Tengfei LI Xiaoyan 《Journal of Arid Land》 SCIE CSCD 2016年第4期591-603,共13页
Being an important desert riparian forest in the lower reaches of the Heihe River Basin, Populus euphratica Oliv. forest functions as a natural barrier in maintaining and preserving the stability of local oases. Accor... Being an important desert riparian forest in the lower reaches of the Heihe River Basin, Populus euphratica Oliv. forest functions as a natural barrier in maintaining and preserving the stability of local oases. Accordingly, accurately estimating the water use of P. euphratica is important for vegetation protection and water resource allocation. To date, little data are available for evaluating the hysteretic effects between sap flow and environmental variables, and for estimating the water use of desert riparian forest. In this study, we measured the sap flow velocity (Vs) of P. euphratica using the heat ratio method during the growing season of 2012. Based on the response of Vs to solar radiation (R,) and vapor pressure deficit (VPD), we estimated the hourly Vs and daily Vs using the multivariable linear regression and a modified Jarvis-Stewart (JS) model, respectively. Hysteretic response of Vs to environmental variables was then evaluated using a sap flow model. We found the thresholds of V, responses to Rs and VPD at both hourly and daily scales during the growing season, and successfully estimated the seasonal variations of hourly V, and daily Vs using the JS model. At an hourly scale, the maximum V~ occurred earlier than the maximum VPD by approximately 0.5 h but later than the maximum R, by approximate 1.0 h. At a daily scale, the maximum Vs lagged behind the maximum VPD by approximately 2.5 h while occurred earlier than the maximum Rs by approximately 2 h. However, hysteretic response of V, was weakened when Rs and VPD were measured together using the JS model at both hourly and daily scales. Consequently, short-term and intensive field campaigns, where Vs and environmental variables can be measured, may be used to estimate short-run sap flow and stand transpiration using only two environmental variables. 展开更多
关键词 sap flow solar radiation vapor pressure deficit Jarvis-Stewart model HYSTERESIS
下载PDF
Gas exchange of Populus euphratica leaves in a riparian zone 被引量:5
13
作者 Dieter OVERDIECK Daniel ZICHE RuiDe YU 《Journal of Arid Land》 SCIE CSCD 2013年第4期531-541,共11页
Riparian vegetation belts in arid regions of Central Asia are endangered to lose their ecosystem services due to intensified land use.For the development of sustained land use,management knowledge of plant performance... Riparian vegetation belts in arid regions of Central Asia are endangered to lose their ecosystem services due to intensified land use.For the development of sustained land use,management knowledge of plant performance in relation to resource supply is needed.We estimated productivity related functional traits at the edges of the habitat of Populus euphratica Oliv.Specific leaf area (SLA) and carbon/nitrogen (C/N) ratio of P.euphratica leaves growing near a former river bank and close to moving sand dunes in the Ebinur Lake National Nature Reserve in Xinjiang,Northwest China (near Kazakhstan) were determined and daily courses of CO2 net assimilation (PN),transpiration (E),and stomatal conductance (gs) of two consecutive seasons were measured during July-August 2007 and June-July 2008.Groundwater level was high (1.5-2.5 m below ground) throughout the years and no flooding occurred at the two tree stands.SLA was slightly lower near the desert than at the former river bank and leaves contained less N in relation to C.Highest E and gs of P.euphratica were reached in the morning before noon on both stands and a second low maximum occurred in the afternoon despite of the unchanged high levels of air to leaf water vapor pressure deficit (ALVPD).Decline of gs in P.euphratica was followed by decrease of E.Water use efficiency (WUE) of leaves near the desert were higher in the morning and the evening,in contrast to leaves from the former river bank that maintained an almost stable level throughout the day.High light compensation points and high light saturation levels of PN indicated the characteristics of leaves well-adapted to intensive irradiation at both stands.In general,leaves of P.euphratica decreased their gs beyond 20 Pa/kPa ALVPD in order to limit water losses.Decrease of E did not occur in both stands until 40 Pa/kPa ALVPD was reached.Full stomatal closure of P.euphratica was achieved at 60 Pa/kPa ALVPD in both stands.E through the leaf surface amounted up to 30% of the highest E rates,indicating dependence on water recharge from the ground despite of obviously closed stomata.A distinct leaf surface temperature (Tleaf) threshold of around 30℃ also existed before stomata started to close.Generally,the differences in gas exchange between both stands were small,which led to the conclusion that micro-climatic constraints to E and photosynthesis were not the major factors for declining tree density with increasing distance from the river. 展开更多
关键词 Populus euphratica water vapor pressure deficit TRANSPIRATION stomatal conductance water use efficiency leaf functional traits
下载PDF
Competition between Populus euphratica and Tamarix ramosissima seedlings under simulated high groundwater availability 被引量:4
14
作者 WU Guilin JIANG Shaowei +2 位作者 LIU Weiyang ZHAO Chengyi LI Jun 《Journal of Arid Land》 SCIE CSCD 2016年第2期293-303,共11页
Desert riparian plants experience high variability in water availability due to hydrological fluctuations. How riparian plants can survive with low water availability has been well studied, however, little is known ab... Desert riparian plants experience high variability in water availability due to hydrological fluctuations. How riparian plants can survive with low water availability has been well studied, however, little is known about the effects of high water availability on plant community structuring. We conducted a mesocosm experiment to test whether seedling competition under simulated high groundwater availability can explain the shift of co-dominance of Populus euphratica and Tamarix ramosissima in early communities to P. euphratica dominance in mature ones along the Tarim River in northwestern China. Seedlings of these two plant species were grown in monoculture and mixture pools with high groundwater availability. Results indicated that the above-ground biomass and relative yield of T. ramosissima were higher than those of P. euphratica. The competitive advantages of T. ramosissima included its rapid response in growth to groundwater enrichment and its water spender strategy, as evidenced by the increased leaf biomass proportion and the inert stomatal response to leaf-to-air vapor pressure deficit (VPD). In comparison, P. euphratica showed a conservative strategy in water use, with a sensitive response to leaf-to-air VPD. Result of the short-term competition was inconsistent with the long-term competition in fields, suggesting that competition exclusion is not the mechanism structuring the desert riparian plant communities. Thus, our research highlights the importance of mediation by environmental fluctuations (such as lessening competition induced by disturbance) in structuring plant communities along the Tarim riparian zones. 展开更多
关键词 community succession vapor pressure deficit (VPD) stomatal conductance riparian plant water usestrategy
下载PDF
Determination of Reference Evapotranspiration Using Penman-Monteith Method in Case of Missing Wind Speed Data under Subhumid Climatic Condition in Hungary 被引量:1
15
作者 Zoltán Varga-Haszonits Éva Szalka Tamás Szakál 《Atmospheric and Climate Sciences》 2022年第2期235-245,共11页
The reference evapotranspiration was calculated using Penman-Monteith method proposed. This method was evaluated on data measured by lysimeter in Szarvas experimental station in Hungary. The results of the two methods... The reference evapotranspiration was calculated using Penman-Monteith method proposed. This method was evaluated on data measured by lysimeter in Szarvas experimental station in Hungary. The results of the two methods were in good agreement. However, this method requires an amount of data which is not available at all sites of meteorological measurement. Therefore it was necessary to investigate which elements influencing evapotranspiration are important and which elements are less important. With the help of investigation was indicated that radiation and vapor pressure deficit play important role in determination of reference evapotranspiration. Taking into account this there was two possibilities to calculate evapotranspiration. One of these is to use Penman-Monteith formula with constant wind speed as advised by Allen. Another one is to neglect wind speed data. Both methods were investigated and the method with constant wind speed was found better in a subhumid climatic condition of Hungary. 展开更多
关键词 Reference Evapotranspiration Global Radiation vapor pressure deficit Sub Humid Climate Irrigation Requirements of Crops
下载PDF
Uncertainty in sap flow of Brazilian mahogany determined by the heat ratio method
16
作者 Alisson Macendo Amaral Frederico Antonio Loureiro Soares +1 位作者 Lucas Melo Vellame Marconi Batista Teixeira 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第4期1457-1466,共10页
The tropical arboreal species Brazilian mahogany(Swietenia macrophylla) is very important economically and ecologically,for which understanding ecophysiological variables such as sap flow will improve understanding of... The tropical arboreal species Brazilian mahogany(Swietenia macrophylla) is very important economically and ecologically,for which understanding ecophysiological variables such as sap flow will improve understanding of the species and its cultivation.This paper aims to measure uncertainties(U) involved in the application of the heat ratio method for determining sap flow in Brazilian mahogany using sets of heating probes and thermometers installed on plants of 18 months of age,cultivated in Yellow Latosol,under a weighing lysimeter and located in a protected environment.The uncertainty in sap flow was calculated as the combination of uncertainty in the thermal diffusivity(U_(k)),conductive section(U_(Sc)) and corrected sap velocity(U_(Vc)).U_(k) had greater weight in determining the flow of sap in Brazilian mahogany,when compared to U_(Sc) and U_(Vc).The thermal diffusivity during the cycle,or period evaluated,must be adjusted to improve the accuracy of the heat ratio method because the sap flow overestimated transpiration by 15.0%.When soil water was optimal In addition,the vapor pressure deficit linearly and indirectly influenced the SF with a difference of 14.6%. 展开更多
关键词 Heat pulse DIFFUSIVITY Reliability TRANSPIRATION vapor pressure deficit
下载PDF
Transpiration and growth responses by Eucalyptus species to progressive soil drying
17
作者 Marcel Carvalho Abreu Alvaro Augusto Vieira Soares +1 位作者 Cleverson Henrique de Freitas Fabrina Bolzan Martins 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第5期1529-1543,共15页
The regulation of plant transpiration is a key factor affecting transpiration efficiency, growth and adaptation of Eucalyptus species to limited water availability in tropical and subtropical environments. However, fe... The regulation of plant transpiration is a key factor affecting transpiration efficiency, growth and adaptation of Eucalyptus species to limited water availability in tropical and subtropical environments. However, few studies have related this trait to the performance of Eucalyptus seedlings and none have investigated the influence of vapor pressure deficit (VPD) on transpiration rates and growth. In this study, the transpiration and growth responses of seedlings of Eucalyptus urophylla (S.T. Blake) and Eucalyptus cloeziana (F. Muell.) to progressive soil water deficits were evaluated under semi-controlled conditions using the fraction of transpirable soil water (FTSW) method. In addition, the influence of VPD on seedling transpiration, development and growth was also investigated. The FTSW threshold ranged from 0.40 to 0.99 for the transpiration rate and from 0.32 to 0.97 for the development and growth variables. Little or no changes in the FTSW threshold were detected in response to changes in atmospheric VPD. Both Eucalyptus species presented a conservation strategy under drought stress. In addition, water-conserving mechanisms during the seedling phase were related to rapid stomatal closure, reduced leaf area, and number of leaves. 展开更多
关键词 Soil water deficit Fraction of transpirable soil water TRANSPIRATION Seedling growth vapor pressure deficit
下载PDF
Identification of Dominant Climate Variables on Spatiotemporal Variation in Reference Evapotranspiration on the Loess Plateau,China
18
作者 LI Xiaofei LIANG Wei +6 位作者 JIAO Lei YAN Jianwu ZHANG Weibin WANG Fengjiao GOU Fen WANG Chengxi SHAO Quanqin 《Chinese Geographical Science》 SCIE CSCD 2022年第4期620-642,共23页
Reference evapotranspiration(ET_(0))is a vital component in hydrometeorological research and is widely applied to various aspects,such as water resource management,hydrological modeling,irrigation deployment,and under... Reference evapotranspiration(ET_(0))is a vital component in hydrometeorological research and is widely applied to various aspects,such as water resource management,hydrological modeling,irrigation deployment,and understanding and predicting the influence of hydrologic cycle variations on future climate and land use changes.Quantifying the influence of various meteorological variables on ET_(0) is not only helpful for predicting actual evapotranspiration but also has important implications for understanding the impact of global climate change on regional water resources.Based on daily data from 69 meteorological stations,the present study analyzed the spatiotemporal pattern of ET_(0) and major contributing meteorological variables to ET_(0) from 1960 to 2017 by the segmented re-gression model,Mann-Kendall test,wavelet analysis,generalized linear model,and detrending method.The results showed that the annual ET_(0) declined slightly because of the combined effects of the reduction in solar radiation and wind speed and the increase in vapor pressure deficit(VPD)and average air temperature in the Loess Plateau(LP)during the past 58 yr.Four change points were detected in 1972,1990,1999,and 2010,and the annual ET_(0) showed a zigzag change trend of‘increasing-decreasing-increasing-decreasing-increasing’.Wind speed and VPD played a leading role in the ET_(0) changes from 1960 to 1990 and from 1991 to 2017,respectively.This study confirms that the dominant meteorological factors affecting ET_(0) had undergone significant changes due to global climate change and vegetation greening in the past 58 years,and VPD had become the major factor controlling the ET_(0) changes on the LP.The data presented herein will contribute to increasing the accuracy of predictions on future changes in ET_(0). 展开更多
关键词 reference evapotranspiration(ET0) change points generalized linear model dominant factors vapor pressure deficit(VPD) Loess Plateau(LP)
下载PDF
Nighttime sap flow and its driving forces for Populus euphratica in a desert riparian forest, Northwest China
19
作者 SI Jianhua FENG Qi +1 位作者 YU Tengfei ZHAO Chunyan 《Journal of Arid Land》 SCIE CSCD 2015年第5期665-674,共10页
Nighttime sap flow is a potentially important factor that affects whole-plant water balance and water-use efficiency (WUE). Its functions include predawn disequilibrium between plant and soil water potentials as wel... Nighttime sap flow is a potentially important factor that affects whole-plant water balance and water-use efficiency (WUE). Its functions include predawn disequilibrium between plant and soil water potentials as well as between the increments of oxygen supply and nutrient uptake. However, main factors that drive nighttime sap flow remain unclear, and researches related to the relationship between nighttime sap flow velocity and environmental factors are limited. Accordingly, we investigated the variations in the nighttime sap flow of Populus euphratica in a desert riparian forest of an extremely arid region, Northwest China. Results indicated that P. euphratica sap flow occurred throughout the night during the growing season because of the partial stomata opening. Nighttime sap flow for the P. euphratica forest accounted for 31%-47% of its daily sap flow during the growing season. The high value of nighttime sap flow could be the result of high stomatal conductance and could have significant implications for water budgets. Throughout the whole growing season, nighttime sap flow velocity of P. euphratica was positively correlated with the vapor pressure deficit (VPD), air temperature and soil water content. We found that VPD and soil water content were the main driving factors for nighttime sap flow of P. euphratica. 展开更多
关键词 nighttime sap flow stomatal conductance vapor pressure deficit driving factors desert riparian forest
下载PDF
Modeling of Soybean Plant Sap Flow
20
作者 Mukhammadzakhrab Ismanov Christopher Henry +1 位作者 Leonel Espinoza Paul Francis 《Agricultural Sciences》 2022年第5期658-673,共16页
Soybean (Glycine max. (L.) Merr.) sap flow during the growth stages in relation to soil moisture, nutrition, and weather conditions determine the plant development. Modeling this process helps to better understand the... Soybean (Glycine max. (L.) Merr.) sap flow during the growth stages in relation to soil moisture, nutrition, and weather conditions determine the plant development. Modeling this process helps to better understand the plant water-nutrition uptake and improve the decisions of efficient irrigation management and other inputs for effective soybean production. Field studies of soybean sap flow took place in 2017-2021 at Marianna, Arkansas using heat balance stem flow gauges to measure the sap flow during the reproductive growth stages R3-R7. Plant water uptake was measured using the lysimeter-container method. The uniform sap flow-based hydraulic system in the soil-root-stem-leaf pathway created negative water tensions with osmotic processes and water surface tensions in stomata cells as water evaporation layers increase are the mechanism of the plant water uptake. Any changes the factors like soil water tension, solar radiation, or air relative humidity immediately, within a few seconds, affect the system’s balance and cause simultaneously appropriate reactions in different parts of the system. The plant water use model was created from plant emergence, vegetative to final reproductive growth stages depending on soil-weather conditions, plant morphology, and biomass. The main factors of the model include solar radiation, air temperature, and air relative humidity. The effective sap flow uptake occurs around 0.8 KPa VPD. Further research is needed to optimize the model’s factors to increase the plant growth dynamics and yield productivity. 展开更多
关键词 Sap Flow Water Potential Solar Radiation Air Relative Humidity vapor pressure deficit EVAPOTRANSPIRATION
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部