The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribologi...The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribological properties of HFCVD diamond films coated on Co-cemented tungsten carbide (WC-Co) substrates are rarely reported in available literatures, especially in the water lubricating conditions. In this paper, conventional microcrystalline diamond(MCD) and fine-grained diamond(FGD) films are deposited on WC-Co substrates and their friction properties are evaluated on a reciprocating ball-on-plate tribometer, where they are brought to slide against ball-bearing steel and copper balls in dry and water lubricating conditions. Scanning electron microscopy(SEM), atomic force microscopy(AFM), surface profilometer and Raman spectroscopy are adopted to characterize as-deposited diamond films; SEM and energy dispersive X-ray(EDX) are used to investigate the worn region on the surfaces of both counterface balls and diamond films. The research results show that the friction coefficient of HFCVD diamond films always starts with a high initial value, and then gradually transits to a relative stable state. For a given counterface and a sliding condition, the FGD film presents lower stable friction coefficients by 0.02-0.03 than MCD film. The transferred materials adhered on sliding interface are supposed to have predominate effect on the friction behaviors of HFCVD diamond films. Furthermore, the effect of water lubricating on reducing friction coefficient is significant. For a given counterpart, the stable friction coefficients of MCD or FGD films reduce by about 0.07-0.08 while sliding in the water lubricating condition, relative to in dry sliding condition. This study is beneficial for widespread applications of HFCVD diamond coated mechanical components and adopting water lubricating system, replacing ofoil lubricating, in a variety of mechanical processing fields to implement the green production process.展开更多
The effect of sliding duration on the tribological behaviors of spot patterned coatings was investigated. Two patterns based on physical vapor deposition (PVD) TiN coatings were used, such as, in-lined (IN) and st...The effect of sliding duration on the tribological behaviors of spot patterned coatings was investigated. Two patterns based on physical vapor deposition (PVD) TiN coatings were used, such as, in-lined (IN) and staggered (ST) spots. The tribological behaviors were evaluated by using a Cameron-Plint wear test rig. The M2 steel discs deposited TiN coatings with IN and ST patterns slid against the ASSAB 17 tool steel pins at a speed of 0.23 m/s, in Shell Tellus T32 lubricant and were loaded with 900 N. The testing results on disc specimens with two types of PVD TiN spot patterns, all coated with a bias voltage of-180 V and slid for 4, 8 and 11 h respectively, were presented. The results revealed that the in-lined coatings possessed relatively better wear behaviors than the staggered pattern coatings. Mechanisms for such superiority and for the cause of peeling were discussed. A relevant design approach was suggested for the application of such patterned coatings.展开更多
The use of metalworking fluids during machining can generate oil mist and endanger the health of workers.In order to study the characteristics and emission laws of oil mist generated by machining,this study constructe...The use of metalworking fluids during machining can generate oil mist and endanger the health of workers.In order to study the characteristics and emission laws of oil mist generated by machining,this study constructed a test bench to simulate the turning process.Parameters affecting the oil mist generated in the minimum quantity lubrication(MQL)mode and flood cooling mode were studied by means of single-factor experiments,and the formation mechanisms of oil mist were analyzed.The results show that the oil mist generated by the MQL system has two main sources,the initial escape of oil mist into the air and the evaporation/condensation of oil mist.The centrifugation has almost no effect on oil mist formation in the MQL mode.The mass concentration of oil mist generated by the MQL system is proportional to the cutting oil flow rate.When the work-piece is at room temperature,increasing the air supply pressure and nozzle distance,increases the oil mist mass concentration.For the flood cooling mode,the concentration of centrifugal aerosol is linearly and positively correlated with the relative centrifugal force generated by the work-piece,and the coefficient of determination(R 2)is above 0.97.The oil mist mass concentrations in MQL mode is 8.33 mg/m^(3)~305.88 mg/m^(3).The MMD and SMD are 0.74μm to 4.42μm and 0.31μm to 2.14μm,respectively.The oil mist mass concentrations in flood cooling mode is 0.2 mg/m^(3)~22.42 mg/m^(3).The MMD and SMD are 1.81μm to 6.58μm and 0.45μm to 5.13μm,respectively.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50575135)Program for New Century Excellent Talents of Ministry of Education of China (Grant No. NCET-06-0399)Tribology Science Fund of the State Key Laboratory of Tribology, China
文摘The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribological properties of HFCVD diamond films coated on Co-cemented tungsten carbide (WC-Co) substrates are rarely reported in available literatures, especially in the water lubricating conditions. In this paper, conventional microcrystalline diamond(MCD) and fine-grained diamond(FGD) films are deposited on WC-Co substrates and their friction properties are evaluated on a reciprocating ball-on-plate tribometer, where they are brought to slide against ball-bearing steel and copper balls in dry and water lubricating conditions. Scanning electron microscopy(SEM), atomic force microscopy(AFM), surface profilometer and Raman spectroscopy are adopted to characterize as-deposited diamond films; SEM and energy dispersive X-ray(EDX) are used to investigate the worn region on the surfaces of both counterface balls and diamond films. The research results show that the friction coefficient of HFCVD diamond films always starts with a high initial value, and then gradually transits to a relative stable state. For a given counterface and a sliding condition, the FGD film presents lower stable friction coefficients by 0.02-0.03 than MCD film. The transferred materials adhered on sliding interface are supposed to have predominate effect on the friction behaviors of HFCVD diamond films. Furthermore, the effect of water lubricating on reducing friction coefficient is significant. For a given counterpart, the stable friction coefficients of MCD or FGD films reduce by about 0.07-0.08 while sliding in the water lubricating condition, relative to in dry sliding condition. This study is beneficial for widespread applications of HFCVD diamond coated mechanical components and adopting water lubricating system, replacing ofoil lubricating, in a variety of mechanical processing fields to implement the green production process.
基金the National Natural Science Foundation of China (No. 50575173).
文摘The effect of sliding duration on the tribological behaviors of spot patterned coatings was investigated. Two patterns based on physical vapor deposition (PVD) TiN coatings were used, such as, in-lined (IN) and staggered (ST) spots. The tribological behaviors were evaluated by using a Cameron-Plint wear test rig. The M2 steel discs deposited TiN coatings with IN and ST patterns slid against the ASSAB 17 tool steel pins at a speed of 0.23 m/s, in Shell Tellus T32 lubricant and were loaded with 900 N. The testing results on disc specimens with two types of PVD TiN spot patterns, all coated with a bias voltage of-180 V and slid for 4, 8 and 11 h respectively, were presented. The results revealed that the in-lined coatings possessed relatively better wear behaviors than the staggered pattern coatings. Mechanisms for such superiority and for the cause of peeling were discussed. A relevant design approach was suggested for the application of such patterned coatings.
基金supported by National Key Research and Develop-ment Plan of the Ministry of Science and Technology of China(Grant No.2018YFC0705300)National Science Foundation of China(Grant No.51878442).
文摘The use of metalworking fluids during machining can generate oil mist and endanger the health of workers.In order to study the characteristics and emission laws of oil mist generated by machining,this study constructed a test bench to simulate the turning process.Parameters affecting the oil mist generated in the minimum quantity lubrication(MQL)mode and flood cooling mode were studied by means of single-factor experiments,and the formation mechanisms of oil mist were analyzed.The results show that the oil mist generated by the MQL system has two main sources,the initial escape of oil mist into the air and the evaporation/condensation of oil mist.The centrifugation has almost no effect on oil mist formation in the MQL mode.The mass concentration of oil mist generated by the MQL system is proportional to the cutting oil flow rate.When the work-piece is at room temperature,increasing the air supply pressure and nozzle distance,increases the oil mist mass concentration.For the flood cooling mode,the concentration of centrifugal aerosol is linearly and positively correlated with the relative centrifugal force generated by the work-piece,and the coefficient of determination(R 2)is above 0.97.The oil mist mass concentrations in MQL mode is 8.33 mg/m^(3)~305.88 mg/m^(3).The MMD and SMD are 0.74μm to 4.42μm and 0.31μm to 2.14μm,respectively.The oil mist mass concentrations in flood cooling mode is 0.2 mg/m^(3)~22.42 mg/m^(3).The MMD and SMD are 1.81μm to 6.58μm and 0.45μm to 5.13μm,respectively.