期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Liquid-liquid two-phase flow in a wire-embedded concentric microchannel: Flow pattern and mass transfer performance
1
作者 Ming Chen Huiyan Jiao +3 位作者 Jun Li Zhibin Wang Feng He Yang Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期281-289,共9页
In this work, flow pattern and mass transfer of liquid-liquid two-phase flow in a wire-embedded concentric microchannel are studied using toluene-water system. Droplet flow, slug flow, oval flow and annular flow are o... In this work, flow pattern and mass transfer of liquid-liquid two-phase flow in a wire-embedded concentric microchannel are studied using toluene-water system. Droplet flow, slug flow, oval flow and annular flow are observed in the wire-embedded concentric microchannel. The effects of embedded wires and physical properties on flow patterns are investigated. The embedded wire insert is conducive to the formation of annular flow. The flow pattern distribution regions are distinguished by the Caaq(capillary number)±We_(org)(Weber number) flow pattern map. When Weorg<0.001, slug flow is the main flow pattern, and when Weorg>0.1, annular flow is the main flow pattern. Oval flow and droplet flow are between We_(org)= 0.001-0.1, and oval flow is transformed into droplet flow with the increase of Caaq. The effect of flow rate, phase ratio, initial acetic acid concentration, insert shape and flow patterns on mass transfers are studied. Mass transfer process is enhanced under annular flow conditions, the volumetric mass transfer coefficient is up to 0.36 s^(-1) because of the high interfacial area and interface renewal rate of annular flow. 展开更多
关键词 flow pattern Mass transfer Microchannels two-phase flow
下载PDF
Numerical modeling and parametric sensitivity analysis of heat transfer and two-phase oil and water flow characteristics in horizontal and inclined flowlines using OpenFOAM 被引量:1
2
作者 Nsidibe Sunday Abdelhakim Settar +1 位作者 Khaled Chetehouna Nicolas Gascoin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1183-1199,共17页
Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to ... Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation. 展开更多
关键词 flow assurance flow pattern Heat transfer flowlines two-phase flow Global sensitivity analysis
下载PDF
TWO-PHASE FLOW PATTERNS IN A 90° BEND AT MICROGRAVITY 被引量:2
3
作者 赵建福 K.S.GABRIEL 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第3期206-211,共6页
Bends are widely used in pipelines carrying single-and two-phase fluids in both ground and space applications.In particular,they play more important role in space applications due to the extreme spatial constraints.In... Bends are widely used in pipelines carrying single-and two-phase fluids in both ground and space applications.In particular,they play more important role in space applications due to the extreme spatial constraints.In the present study,a set of experimental data of two-phase flow patterns and their transitions in a 90°bend with inner diameter of 12.7 mm and curvature radius of 76.5 mm at microgravity conditions are reported.Gas and liquid superficial velocities are found to range from (1.0~23.6)m/s for gas and(0.09~0.5)m/s for liquid,respectively.Three major flow patterns, namely slug,slug-annular transitional,and annular flows,are observed in this study.Focusing on the differences between flow patterns in bends and their counterparts in straight pipes,detailed analyses of their characteristics are made.The transitions between adjoining flow patterns are found to be more or less the same as those in straight pipes,and can be predicted using Weber number models satisfactorily. The reasons for such agreement are carefully examined. 展开更多
关键词 two-phase flow flow patterns 90°bend MICROGRAVITY
下载PDF
Effects of tube cross-sectional shapes on flow pattern, liquid film and heat transfer of n-pentane across tube bundles
4
作者 Xuejing He Zhenlin Li +1 位作者 Ji Wang Hai Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期16-25,共10页
The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes o... The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes on flow pattern, film thickness and heat transfer of n-pentane across tube bundles, including circle, ellipse-shaped, egg-shaped and cam-shaped tube bundles. Simulation results agree well with experimental data in the literature. The liquid film thickness of sheet flow and heat transfer for different tube shapes were obtained numerically. The flow pattern transition occurs lower vapor quality for ellipse-shaped tube than other tube shapes. For sheet flow, the liquid film on circle tube and ellipseshaped tube is symmetrically distributed along the circumferential direction. However, the liquid film on egg-shaped tube at circumferential angles(θ) = 15°–60° is thicker than θ = 135°–165°. The liquid film on cam tube at θ = 15°–60° is slightly thinner than θ = 135°–165°. The liquid film thickness varies from thinner to thicker for ellipse-shaped, cam-shaped, egg-shape and circle within θ = 15°–60°. The effect of tube shape is insignificant on thin liquid film thickness. Ellipse-shaped tube has largest heat transfer coefficient for sheet flow. In practical engineering, the tube shape could be designed as ellipse to promote heat transfer. 展开更多
关键词 Tube shapes flow pattern Liquid film thickness Heat transfer two-phase flow
下载PDF
Markov transition probability-based network from time series for characterizing experimental two-phase flow 被引量:1
5
作者 高忠科 胡沥丹 金宁德 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期226-231,共6页
We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments f... We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas-liquid flow patterns. 展开更多
关键词 complex network time series analysis chaotic dynamics two-phase flow pattern
下载PDF
Local Flow Regime Transition Criteria of Gas-Liquid Two-phase Flow in Vertical Upward Tube with a Horizontal Rod
6
作者 胡志华 杨燕华 +1 位作者 刘磊 周芳德 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第4X期442-449,共8页
关键词 GAS-LIQUID two-phase cross flow LOCAL flow pattern transition
下载PDF
Branch Quality Control of Gas-Liquid Two-Phase Flow Using a Novel T-Junction Type Distributor
7
作者 Fa-Chun Liang Jing Chen +1 位作者 Jin-Long Wang Hao Yu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第4期110-115,共6页
In order to eliminate mal-distribution and ensure the side arm to produce desirable gas quality a special distributor is proposed. The experimental distributor mainly consists of a straight through section,a gas extra... In order to eliminate mal-distribution and ensure the side arm to produce desirable gas quality a special distributor is proposed. The experimental distributor mainly consists of a straight through section,a gas extraction line,a liquid extraction line and a side arm branch. A gas orifice and a liquid orifice are mounted at the gas and liquid extraction line respectively to control the outlet gas quality. The diameter of the liquid orifice was set to 2. 50 mm and three gas orifices with different size( dG= 2. 65,5. 00,10. 00 mm) were tested. The experiments were carried out at an air-water two-phase flow loop. The gas superficial velocity ranged from 6. 0 to 20. 0 m /s and the liquid superficial velocity was in the range of 0. 02- 0. 18 m /s. Flow patterns such as wave flow,slug flow and annular flow were observed. The gas quality of the side arm branch was found mainly determined by the flow area ratio of the gas orifice to the liquid orifice and independent of gas and liquid superficial velocity,flow patterns and extraction flux. 展开更多
关键词 gas-liquid two-phase flow DISTRIBUTOR phase splitting flow pattern quality control
下载PDF
Numerical Investigation on Flow Pattern of Air-Oil with Different Viscosities Lubrication
8
作者 Qunfeng Zeng Jinhua Zhang +1 位作者 Jun Hong Wenjun Su 《Engineering(科研)》 2017年第1期1-13,共13页
In the present work, the performance of oil-air two-phase flow under different lubricant oils was investigated. The simulation method was applied to study the influence of the oil viscosity on the flow pattern, veloci... In the present work, the performance of oil-air two-phase flow under different lubricant oils was investigated. The simulation method was applied to study the influence of the oil viscosity on the flow pattern, velocity distribution and Re number in oil-air lubrication by FLUENT software with VOF model to acquire the working performance of oil-air lubrication for high-speed ball bearing. This method was used to obtain the optimum lubrication conditions of high-speed ball bearing. The optimum operating conditions that produce the optimum flow pattern were provided. The optimum annular flow was obtained by PAO6 oil with the low viscosity. Reynolds number influences the fluid shape and distribution of oil and air in pipe. The annular flow can be formed when Reynolds number is an appropriate value. The velocity distribution of oil-air two-phase flow at outlet was also discussed by different oil viscosities. The simulating results show that due to the effect of the oil viscosity and flow pattern the velocity decreased and expanded gradually close to the pipe wall, and the velocity increased close to the central pipe. The simulation results provide the proposal for the design and operation of oil-air two-phase flow lubrication experiments in the present work. This work provides a useful method in designing oil-air lubrication with the optimum flow pattern and the optimum operating conditions. 展开更多
关键词 Oil-Air LUBRICATION flow pattern two-phase flow ANNULAR flow
下载PDF
Calculating densities and viscosities of natural gas with a high content of C_(2+) to predict two-phase liquid-gas flow pattern
9
作者 Yekaterina Moisseyeva Alexandra Saitova Sergey Strokin 《Petroleum》 EI CSCD 2023年第4期579-591,共13页
The paper is devoted to the two-phase flow simulation.The gas-condensate mixture flow in a horizontal pipe under high pressure is considered.The influence of the equation of state(EOS)choice for mixture properties mod... The paper is devoted to the two-phase flow simulation.The gas-condensate mixture flow in a horizontal pipe under high pressure is considered.The influence of the equation of state(EOS)choice for mixture properties modelling on the flow regime calculation results is studied for gas with high content of methane homologues.An analytical overview of the methods to predict the flow pattern is provided.Based on this analysis,two techniques are selected.For these techniques,values of density and viscosity for each phase are required.Density calculation for the gas phase is performed with Van der Waals based EOS.The propriate EOS is selected based on studies of calculation errors for test mixtures.Calculation of liquid phase density is done by means of Patela-Teja and Guo-Du equations,two different models are considered for viscosity estimation.The flow patterns of gas-condensate mixture in a range of temperatures and pressures are calculated and verified via probability map.The results of study allow to recommend the Brusilovsky EOS for calculation of densities for similar gas mixtures and make more rigorous flow regime evaluation.The probability map shows that for the chosen composition and parameters of media the flow pattern is mostly transitional between segregated and annular independent from EOS. 展开更多
关键词 two-phase flow flow pattern Natural gas Wet gas High content of C_(2+) High pressure
原文传递
Improving Existing Drainage and Gas Recovery Technologies: An Experimental Study on the Wellbore Flow in a Horizontal Well
10
作者 Shan Jin Xiaohong Bai +2 位作者 Wei Luo Li Li Ruiquan Liao 《Fluid Dynamics & Materials Processing》 EI 2020年第6期162-175,共14页
With the increasing number of horizontal wells with low pressure,low yield,and water production,the phenomenon of water and liquid accumulation in gas wells is becoming progressively more serious.In order to fix these... With the increasing number of horizontal wells with low pressure,low yield,and water production,the phenomenon of water and liquid accumulation in gas wells is becoming progressively more serious.In order to fix these issues,it is necessary to improve existing drainage and gas recovery technologies,increase the fluid carrying capacity of these wells,and ensure that the bottom-hole airflow has enough energy to transport the liquid to the wellhead.Among the many techniques of drainage and gas recovery,the gas lift has recently become a popular method.In the present study,through the simulation of the entire horizontal well,the flow regularity of the whole wellbore during the lift of low-pressure gas has been analyzed.The pressure distribution,liquid holdup rate,flow pattern,and energy loss(including gravity loss and friction loss)have been determined using the Beggs-brill approach.It has been found that the total pressure drop of the wellbore decreases first and increases gradually after reaching a minimum value when gas extraction is carried out via gas lift.Based on the analysis of the influence of the injection volume on wellbore pressure drop and the influence of flow pattern on the lifting efficiency,the optimal gas-lift injection parameters have been determined by taking the minimum pressure loss of wellbore as the judgment criterion. 展开更多
关键词 Horizontal well gas-liquid two-phase flow gas lift flow pattern PRESSURE pressure drop
下载PDF
Classification of Oil-Gas-Water Three-Phase Flow in a Pipeline Based on BP Neural Network Analysis
11
作者 Wenjing Lu Peng Li Xuhui Zhang 《Journal of Data Analysis and Information Processing》 2022年第4期185-197,共13页
The flow pattern in a pipeline is a very important topic in petroleum exploitation. This paper is to classify the flow pattern of oil-gas-water flow in a pipeline by using BP neural network. The effects of different p... The flow pattern in a pipeline is a very important topic in petroleum exploitation. This paper is to classify the flow pattern of oil-gas-water flow in a pipeline by using BP neural network. The effects of different parameter combinations are investigated to find the most important ones. It is shown that BP neural network can be used in the analysis of the flow pattern of three-phase flow in pipelines. In most cases, the mean square error is large for the horizontal pipes. The optimized neuron number of the middle layer changes with conditions. So, we must changes the neuron number of the middle layer in simulation for any conditions to seek the best results. These conclusions can be taken as references for further study of the flow pattern of oil-gas-water in a pipeline. 展开更多
关键词 BP Neural Network flow pattern two-phase flow Dimensionless Controlling Parameters
下载PDF
Experimental study on two-phase gas-liquid flow patterns at normal and reduced gravity conditions 被引量:5
12
作者 赵建福 解京昌 +1 位作者 林海 胡文瑞 《Science China(Technological Sciences)》 SCIE EI CAS 2001年第5期553-560,共8页
Experimental studies have been performed for horizontal two-phase air-water flows at nor-mal and reduced gravity conditions in a square cross-section channel. The experiments at reducedgravity are conducted on board t... Experimental studies have been performed for horizontal two-phase air-water flows at nor-mal and reduced gravity conditions in a square cross-section channel. The experiments at reducedgravity are conducted on board the Russian IL-76 reduced gravity airplane. Four flow patterns, namelybubble, slug, slug-annular transition and annular flows, are observed depending on the liquid and gassuperficial velocities at both conditions. Semi-theoretical Weber number model is developed to includethe shape influence on the slug-annular transition. It is shown that its prediction is in reasonable agree-ment with the experimental slug-annular transition under both conditions. For the case of two-phasegas-liquid flow with large value of the Froude number, the drift-flux model can predict well the observedboundary between bubble and slug flows. 展开更多
关键词 microgravity two-phase GAS-LIQUID flow flow pattern NON-CIRCULAR cross-section.
原文传递
Experimental study on the flow pattern and pressure gradient of air-water two-phase flow in a horizontal circular mini-channel 被引量:5
13
作者 Sudaija Aqli Haq +2 位作者 Deendarlianto Indarto Adhika Widyaparaga 《Journal of Hydrodynamics》 SCIE EI CSCD 2019年第1期102-116,共15页
Experimental studies on the flow pattern and the pressure gradient of gas-liquid co-current two-phase flow in a mini-channel were conducted.The test section was a transparent circular channel of 1.6 mm inner diameter.... Experimental studies on the flow pattern and the pressure gradient of gas-liquid co-current two-phase flow in a mini-channel were conducted.The test section was a transparent circular channel of 1.6 mm inner diameter.The working fluids were air and water.The superficial velocities of gas and liquid were in the range of 0.025-66.300 m/s and 0.033-4.935 m/s,respectively.In the present work,the flow pattern and the pressure gradient data were obtained by analyzing the flow images captured by a high-speed camera,and by using the pressure transducer,respectively.As a result,it was found that (1) the obtained flow patterns were bubbly,plug,slug-annular,annular,and chum flows,(2) new experimental correlations on the bubble and plug lengths were proposed,whereas the lengths are the function of the homogeneous void fraction,(3) both gas and liquid superficial velocities affect proportionally to the pressure gradient,whereas it increases with the increase both of JG,JL.In addition,the obtained flow patterns are in a good agreement with that of the available flow pattern maps in the open literatures,such as,Triplett et al.(1999) and Chung and Kawaji (2004). 展开更多
关键词 two-phase flow mini channel flow pattern pressure GRADIENT plug length
原文传递
EFFECT OF SURFACTANT ON TWO-PHASE FLOW PATTERNS OF WATER-GAS IN CAPILLARY TUBES 被引量:5
14
作者 LIU Zhen-hua GAO Yi-pu 《Journal of Hydrodynamics》 SCIE EI CSCD 2007年第5期630-634,共5页
Flow patterns of liquid-gas two-phase flow were experimentally investigated. The experiments were carried out in both vertical and horizontal capillary tubes having inner diameters of 1,60 mm, The working liquid was t... Flow patterns of liquid-gas two-phase flow were experimentally investigated. The experiments were carried out in both vertical and horizontal capillary tubes having inner diameters of 1,60 mm, The working liquid was the mixture of water and Sodium Dodecyl Benzoyl Sulfate (SDBS). The working gas was Nitrogen. For the water/SDBS mixture-gas flow in the vertical capillary tube, flow-pattern transitions occurred at lower flow velocities than those for the water-gas flow in the same tube. For the water/SDBS mixture-gas flow in the horizontal capillary tube, surface tension had little effect on the bubbly-intermittent transition and had only slight effect on the plug-slug and slug-annular transitions. However, surface tension had significant effect on the wavy stratified flow regime. The wavy stratified flow regime of water/SDBS mixture-gas flow expanded compared with that of water-gas. 展开更多
关键词 two-phase flow flow pattern map capillarytube SURFACTANT
原文传递
Two-phase Flow Patterns in a Square Mini-channel 被引量:2
15
作者 Jianfu Zhao Gang Liu Bin Li 《Journal of Thermal Science》 SCIE EI CAS CSCD 2004年第2期174-178,共5页
This paper presents a new set of experimental data of air-water flow patterns in a channel with a cross-section of 1×1 mm2. The ranges of the gas and liquid superficial velocities are 0.1-10 m/s and 0.2~7 m/s, re... This paper presents a new set of experimental data of air-water flow patterns in a channel with a cross-section of 1×1 mm2. The ranges of the gas and liquid superficial velocities are 0.1-10 m/s and 0.2~7 m/s, respectively. Bubble, bubble-slug, slug, and frothy flows are observed. The present data are compared with other data in mini-channels reported in literature, and also compared with those in normal channel at microgravity, in which the Bond number has the same order of magnitude. The slug-frothy boundary is in consistent with each other, but for the bubble-slug transition, a much smaller value for the transition quality in the drift-flux model is obtained in the present study than those predicted by the empirical relations for the case of microgravity. It’s shown that the mini-scale modeling may not be an effective way to anticipate the bubble-slug transition of two-phase flow at microgravity. 展开更多
关键词 two-phase flow flow pattern MINI-CHANNEL MICROGRAVITY
原文传递
Flow Pattern and Heat Transfer Behavior of Boiling Two-Phase Flow in Inclined Pipes
16
作者 Liu Dezhang Ouyang Ning Nanjing Aeronautical Institute, 210016 Nanjing, China 《Journal of Thermal Science》 SCIE EI CAS CSCD 1992年第3期196-202,共7页
Movable Electrical Conducting Probe (MECP),a kind of simple and reliable measuring transducer,used for predicting full-flow-path flow pattern in a boiling vapor/liquid two-phase flow is introduced in this paper when t... Movable Electrical Conducting Probe (MECP),a kind of simple and reliable measuring transducer,used for predicting full-flow-path flow pattern in a boiling vapor/liquid two-phase flow is introduced in this paper when the test pipe is set at different inclination angles,several kinds of flow patterns,such as bubble,slug,churn,intermittent,and annular flows,may be observed in accordance with the locations of MECP.By means of flow pattern analysis,flow fleld numerical calculations have been carried out,and heat transfer coeffcient correlations along full-flow-path derived.The results show that heat transfer performance of boiling two-phase flow could be significanfly augmanted as expected in some flow pattern zones.The results of the investigation,measuring techniques and conclusions contained in this paper would be a useful reference in foundational research for prediction of flow pattern and heat transfer behavior in boiling two-phase flow,as well as for turbine vane liquid-cooling design. 展开更多
关键词 二相流 热传导 流模式
原文传递
Numerical Study of Void Fraction Distribution Propagation in Gas-Liquid Two-Phase Flow
17
作者 杨健慧 李青 卢文强 《Tsinghua Science and Technology》 SCIE EI CAS 2005年第3期398-403,共6页
A dynamic propagation model was developed for waves in two-phase flows by assuming that continuity waves and dynamic waves interact nonlinearly for certain flow conditions. The drift-flux model is solved with the one-... A dynamic propagation model was developed for waves in two-phase flows by assuming that continuity waves and dynamic waves interact nonlinearly for certain flow conditions. The drift-flux model is solved with the one-dimensional continuity equation for gas-liquid two-phase flows as an initial-boundary value problem solved using the characteristic-curve method. The numerical results give the void fraction dis- tribution propagation in a gas-liquid two-phase flow which shows how the flow pattern transition occurs. The numerical simulations of different flow patterns show that the void fraction distribution propagation is deter- mined by the characteristics of the drift-flux between the liquid and gas flows and the void fraction range. Flow pattern transitions begin around a void fraction of 0.27 and end around 0.58. Flow pattern transitions do not occur for very high void concentrations. 展开更多
关键词 void fraction distribution gas-liquid two-phase flow flow pattern transition
原文传递
Visualization Investigation on Temperature Oscillation and Two-Phase Behaviors of A Flat Loop Heat Pipe
18
作者 DU Sheng ZHANG Quan +3 位作者 LING Li ZOU Sikai LIU Lijun MENG Fanxi 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第4期1536-1546,共11页
To better analyzing the temperature oscillation and the two-phase behavior inside a flat loop heat pipe,visual studies were conducted.Under the 20℃ water cooling and horizontal orientation,the effects of the filling ... To better analyzing the temperature oscillation and the two-phase behavior inside a flat loop heat pipe,visual studies were conducted.Under the 20℃ water cooling and horizontal orientation,the effects of the filling ratio and heat loads on the temperature oscillation were analyzed.Based on the experimental data,the results indicate that owing to the increased system pressure,the temperature oscillation decays as the filling ratio increases from 34%to 58%.Meanwhile,during the startup process,temperature oscillation tends to occur during the boiling and steady stages due to the more violent two-phase behavior,while the temperature curves are smooth during the slow evaporation stage.Moreover,as the heat load increases,the evaporation becomes more intense at the active zone of evaporator,leading to a faster startup process and a higher oscillation frequency.Besides,owing to the synergistic effect of two-phase flow in the compensation chamber caused by heat leak and subcooled liquid backflowing,a“breathing”oscillation behavior of the vapor-liquid interface is observed at the compensation chamber,which further leads to the unstable operation behavior of the loop heat pipe system. 展开更多
关键词 loop heat pipe temperature oscillation visualization observations two-phase flow patterns start-up characteristics vapor-liquid interface fluctuation
原文传递
Study on an improved rotating microchannel separator in the intensification for demulsification and separation process
19
作者 Chunxin Fan Zini Guo Jianhong Luo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期181-191,共11页
An improved rotating microchannel(IRM) separator was further explored in the intensification for demulsification and separation process. Oil-in-water(O/W) emulsion system of 2-ethylhexyl phosphoric acid-2-ethylhexyl e... An improved rotating microchannel(IRM) separator was further explored in the intensification for demulsification and separation process. Oil-in-water(O/W) emulsion system of 2-ethylhexyl phosphoric acid-2-ethylhexyl ester(P507)–water without emulsifier was employed to evaluate the performance of the new equipment. In this experiment, the influence on demulsification separation process was explored by changing the geometrical structure and channel height of the microchannel and combining the liquid–liquid two-phase flow pattern, and the correlation general graph between demulsification efficiency and dimensionless parameters was established. The total demulsification effect of the IRM and the separation capacity of the clear organic phase recovered from demulsification are significantly improved. In addition, the liquid–liquid two-phase flow pattern of the clear organic phase after demulsification and the remaining emulsion in the IRM are observed and recorded by high-speed photography. The separation ability of organic phase from the upper outlet can be significantly improved when the total demulsification rate of IRM is up to 90%. There are 3 types and 6 kinds of flow patterns observed. The results demonstrated that the suitable demulsification performance is obtained when the liquid–liquid two-phase inside the IRM is in a parallel pattern. Finally, the relation map between total demulsification efficiency and the universal flow is drawn, which provides a basis for the accurate control of the IRM device. 展开更多
关键词 Improved rotating microchannel(IRM) Enhanced demulsification and separation process Liquid-liquid two-phase flow pattern
下载PDF
U形管内汽液两相流流型数值模拟及优化
20
作者 王强 邓科 +2 位作者 钦书丽 曾金辉 季敏东 《东方电气评论》 2023年第3期70-74,共5页
为研究U形管内汽液两相流流型变化,使用多相流Mixture混合模型对其进行了数值模拟,分析U形管内流型及传热特性的变化。通过分析模拟结果,优化蒸发器结构,提高其换热性能及运行可靠性。
关键词 汽液两相流 流型 U形管
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部