In general,Variable-Speed Constant Frequency (VSCF)Wind generation system is controlled by stator voltage orientation method which based on the mathematic model of VSCF Wind generation system and discussed the control...In general,Variable-Speed Constant Frequency (VSCF)Wind generation system is controlled by stator voltage orientation method which based on the mathematic model of VSCF Wind generation system and discussed the control strategy.Present the whole dynamic control model of variable-speed wind generator system in MATLAB/ Simulink,and the simulation results confirm the validity and effectiveness of the proposed control strategy.展开更多
Based on the characteristic of AC-excited variable speed constant frequency(VSCF)wind power generation,the vector control technique was applied in a doubly fed induction generator(DFIG).Maximum wind energy or maximum ...Based on the characteristic of AC-excited variable speed constant frequency(VSCF)wind power generation,the vector control technique was applied in a doubly fed induction generator(DFIG).Maximum wind energy or maximum output power point can be tracked by decoupling control of active power and reactive power.The research result shows that the net power of generation system delivered to grid in maximum wind energy tracking mode is not the most.We presented a novel maximum power point tracking(MPPT)control strategy by analyzing the DFIG mathematic model and power relations which delivered the maximum power to the grid.The maximum power point could be tracked automatically without measuring wind speed in the control strategy and the control was independent of optimal turbine power curve,which had excellent dynamic and static performances and robustness.Simulation and experimental results testify the accuracy and validity of the control strategy.展开更多
In cascaded H-bridge multilevel inverter, a variable frequency inverted sine PWM technique is modeled for hybrid electric vehicles. It has a particular advantage of increasing power which is achieved using series conn...In cascaded H-bridge multilevel inverter, a variable frequency inverted sine PWM technique is modeled for hybrid electric vehicles. It has a particular advantage of increasing power which is achieved using series connection of H-bridge and also this topology is capable to produce superior spectral quality with considerable improvement of fundamental voltage. The variable frequency inverted sine PWM technique produces lesser torque ripple and enhances the fundamental output voltage mainly at lower modulation index ranges. The topologies of multilevel inverter are flying capacitor, diode clamped and cascaded inverter. In the paper, we will discuss about the cascaded multilevel inverter based on inverted sine PWM technique. The two switching strategies widely used to control multilevel inverters are constant frequency inverted sine PWM (CF-ISPWM) and variable frequency inverted sine PWM (VF-ISPWM). This implies that switch utilization substantially reduces 32.35% of the constant frequency inverted sine PWM switching technique. The performance of the technique is validated in terms of Total Harmonic Distortion (THD) and Torque ripple which significantly reduces when compared to constant frequency ISPWM. The analysis of conventional triangular PWM inverter and inverted sine PWM inverter using constant and variable switching scheme is done in MATLAB Simulink and verified experimentally by FPGA Spartan 3E processor.展开更多
This paper presents a solution to the circulating current fault of aircraft power supply.The DC-link type Variable Frequency to Constant Frequency(VFCF)converter system is the preferred scheme to feed the constant 400...This paper presents a solution to the circulating current fault of aircraft power supply.The DC-link type Variable Frequency to Constant Frequency(VFCF)converter system is the preferred scheme to feed the constant 400 Hz load in an aircraft with a variable frequency power supply.Due to the requirement of aircraft standards,both grounds of the rectification and inversion stage are tied to the metal frame of the aircraft.With such a tied ground,the DC bus voltage rises greatly,and a large circulating current appears in the casing as the ground,which leads to equipment failure and potential safety hazards.According to the existing methods of circulating current fault suppression,this paper analyzes the causes of the above faults and the harmonic components of circulating current and points out the limitations of the existing methods.Therefore,a Common-Mode(CM)choke-based method is proposed to provide a high impedance in the path of the CM circulating current.By doing so,the circulating current can be suppressed without the additional burden of the hardware and control algorithm,which is quite friendly for quality control of mass-production aircraft.Moreover,a simplified mathematic model of the VFCF converter system is derived to calculate the minimum inductance value reference of the CM choke,which saves the weight of passive devices to the greatest extent.Finally,simulation and experimental results are studied to verify the effectiveness of the proposed method.展开更多
The adapted DC-DC converters should be smaller in size and have a small output current ripple to meet the increasing demand for low voltages with high performance and high density micro processors for several microele...The adapted DC-DC converters should be smaller in size and have a small output current ripple to meet the increasing demand for low voltages with high performance and high density micro processors for several microelectronic load applications. This paper proposes a DC-DC converter using variable on-time and variable switching frequency control enhanced constant ripple current control and reduced magnetic components. The proposed converter is realized by making the turn-offtime proportional to the on-time of the converter, according to the input and output voltage, thereby reducing the corresponding current ripple on output voltage in the continuous conduction mode. A Buck DC-DC converter using the proposed control strategy is analyzed in detail, along with some experimental results to show the performance and effectiveness of this converter.展开更多
文摘In general,Variable-Speed Constant Frequency (VSCF)Wind generation system is controlled by stator voltage orientation method which based on the mathematic model of VSCF Wind generation system and discussed the control strategy.Present the whole dynamic control model of variable-speed wind generator system in MATLAB/ Simulink,and the simulation results confirm the validity and effectiveness of the proposed control strategy.
基金Funded by the National Natural Science Foundation of China(No.60974049)the Science and Technology Support Industrial Project of Jiangsu Province(No.BZ2008031,No.BE2008074,and No.BE2009090)+1 种基金the Nantong International Cooperative Project(No.W2009003)the Natural Science Foundation of Nantong University(No.08Z022 and No.08Z025).
文摘Based on the characteristic of AC-excited variable speed constant frequency(VSCF)wind power generation,the vector control technique was applied in a doubly fed induction generator(DFIG).Maximum wind energy or maximum output power point can be tracked by decoupling control of active power and reactive power.The research result shows that the net power of generation system delivered to grid in maximum wind energy tracking mode is not the most.We presented a novel maximum power point tracking(MPPT)control strategy by analyzing the DFIG mathematic model and power relations which delivered the maximum power to the grid.The maximum power point could be tracked automatically without measuring wind speed in the control strategy and the control was independent of optimal turbine power curve,which had excellent dynamic and static performances and robustness.Simulation and experimental results testify the accuracy and validity of the control strategy.
文摘In cascaded H-bridge multilevel inverter, a variable frequency inverted sine PWM technique is modeled for hybrid electric vehicles. It has a particular advantage of increasing power which is achieved using series connection of H-bridge and also this topology is capable to produce superior spectral quality with considerable improvement of fundamental voltage. The variable frequency inverted sine PWM technique produces lesser torque ripple and enhances the fundamental output voltage mainly at lower modulation index ranges. The topologies of multilevel inverter are flying capacitor, diode clamped and cascaded inverter. In the paper, we will discuss about the cascaded multilevel inverter based on inverted sine PWM technique. The two switching strategies widely used to control multilevel inverters are constant frequency inverted sine PWM (CF-ISPWM) and variable frequency inverted sine PWM (VF-ISPWM). This implies that switch utilization substantially reduces 32.35% of the constant frequency inverted sine PWM switching technique. The performance of the technique is validated in terms of Total Harmonic Distortion (THD) and Torque ripple which significantly reduces when compared to constant frequency ISPWM. The analysis of conventional triangular PWM inverter and inverted sine PWM inverter using constant and variable switching scheme is done in MATLAB Simulink and verified experimentally by FPGA Spartan 3E processor.
基金supported by the Natural Science Foundation for Young Scientists of Shanxi Province,China(No.52007154).
文摘This paper presents a solution to the circulating current fault of aircraft power supply.The DC-link type Variable Frequency to Constant Frequency(VFCF)converter system is the preferred scheme to feed the constant 400 Hz load in an aircraft with a variable frequency power supply.Due to the requirement of aircraft standards,both grounds of the rectification and inversion stage are tied to the metal frame of the aircraft.With such a tied ground,the DC bus voltage rises greatly,and a large circulating current appears in the casing as the ground,which leads to equipment failure and potential safety hazards.According to the existing methods of circulating current fault suppression,this paper analyzes the causes of the above faults and the harmonic components of circulating current and points out the limitations of the existing methods.Therefore,a Common-Mode(CM)choke-based method is proposed to provide a high impedance in the path of the CM circulating current.By doing so,the circulating current can be suppressed without the additional burden of the hardware and control algorithm,which is quite friendly for quality control of mass-production aircraft.Moreover,a simplified mathematic model of the VFCF converter system is derived to calculate the minimum inductance value reference of the CM choke,which saves the weight of passive devices to the greatest extent.Finally,simulation and experimental results are studied to verify the effectiveness of the proposed method.
文摘The adapted DC-DC converters should be smaller in size and have a small output current ripple to meet the increasing demand for low voltages with high performance and high density micro processors for several microelectronic load applications. This paper proposes a DC-DC converter using variable on-time and variable switching frequency control enhanced constant ripple current control and reduced magnetic components. The proposed converter is realized by making the turn-offtime proportional to the on-time of the converter, according to the input and output voltage, thereby reducing the corresponding current ripple on output voltage in the continuous conduction mode. A Buck DC-DC converter using the proposed control strategy is analyzed in detail, along with some experimental results to show the performance and effectiveness of this converter.