Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following ...Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy.展开更多
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a ...Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.展开更多
Long period variable(LPV)stars are very promising distance indicators in the infrared bands.We selected asymptotic giant branch(AGB)stars in the Large and Small Magellanic Cloud(LMC and SMC)from the Gaia Data Release ...Long period variable(LPV)stars are very promising distance indicators in the infrared bands.We selected asymptotic giant branch(AGB)stars in the Large and Small Magellanic Cloud(LMC and SMC)from the Gaia Data Release 3 LPV catalog,and classified them into oxygen-rich(O-rich)and carbon-rich(C-rich)AGB stars.Using the Wide-field Infrared Survey Explorer database,we determined the W1-and W2-band period-luminosity relations(PLRs)for each pulsation-mode sequence of AGB stars.The dispersion of the PLRs of O-rich AGB stars in sequences C'and C is relatively small,around 0.14 mag.The PLRs of LMC and SMC are consistent in each sequence.In the W2 band,the PLR of large-amplitude C-rich AGB stars is steeper than that of small-amplitude C-rich AGB stars,due to their more circumstellar dust.By two methods,we find that some PLR sequences of O-rich AGB stars in the LMC are dependent on metallicity.The coefficients of the metallicity effect areβ=-0.533±0.213 mag dex~1andβ=-0.767±0.158 mag dex~1for sequence C in W1 and W2 bands,respectively.The significance of the metallicity effect in W1 band for the four sequences is 2.2-3.5σ.Both of these imply that distance measurements using O-rich Mira may need to take the metallicity effect into account.展开更多
In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fracti...In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security.展开更多
In regard to unconventional oil reservoirs,the transient dual-porosity and triple-porosity models have been adopted to describe the fluid flow in the complex fracture network.It has been proven to cause inaccurate pro...In regard to unconventional oil reservoirs,the transient dual-porosity and triple-porosity models have been adopted to describe the fluid flow in the complex fracture network.It has been proven to cause inaccurate production evaluations because of the absence of matrix-macrofracture communication.In addition,most of the existing models are solved analytically based on Laplace transform and numerical inversion.Hence,an approximate analytical solution is derived directly in real-time space considering variable matrix blocks and simultaneous matrix depletion.To simplify the derivation,the simultaneous matrix depletion is divided into two parts:one part feeding the macrofractures and the other part feeding the microfractures.Then,a series of partial differential equations(PDEs)describing the transient flow and boundary conditions are constructed and solved analytically by integration.Finally,a relationship between oil rate and production time in real-time space is obtained.The new model is verified against classical analytical models.When the microfracture system and matrix-macrofracture communication is neglected,the result of the new model agrees with those obtained with the dual-porosity and triple-porosity model,respectively.Certainly,the new model also has an excellent agreement with the numerical model.The model is then applied to two actual tight oil wells completed in western Canada sedimentary basin.After identifying the flow regime,the solution suitably matches the field production data,and the model parameters are determined.Through these output parameters,we can accurately forecast the production and even estimate the petrophysical properties.展开更多
Plants play an essential role in matter and energy transformations and are key messengers in the carbon and energy cycle. Net primary productivity (NPP) reflects the capability of plants to transform solar energy into...Plants play an essential role in matter and energy transformations and are key messengers in the carbon and energy cycle. Net primary productivity (NPP) reflects the capability of plants to transform solar energy into photosynthesis. It is very sensible for factors affecting on vegetation variability such as climate, soils, plant characteristics and human activities. So, it can be used as an indicator of actual and potential trend of vegetation. In this study we used the actual NPP which was derived from MODIS to assess the response of NPP to climate variables in Gadarif State, from 2000 to 2010. The correlations between NPP and climate variables (temperature and precipitation) are calculated using Pearson’s Correlation Coefficient and ordinary least squares regression. The main results show the following 1) the correlation Coefficient between NPP and mean annual temperature is Somewhat negative for Feshaga, Rahd, Gadarif and Galabat areas and weakly negative in Faw area;2) the correlation Coefficient between NPP and annual total precipitation is weakly negative in Faw, Rahd and Galabat areas and somewhat negative in Galabat and Rahd areas. This study demonstrated that the correlation analysis between NPP and climate variables (precipitation and temperature) gives reliably result of NPP responses to climate variables that is clearly in a very large scale of study area.展开更多
In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propos...In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propose a multi-ring discrete modulation continuous variable quantum key sharing scheme(MR-DM-CVQSS). In this paper, we primarily compare single-ring and multi-ring M-symbol amplitude and phase-shift keying modulations. We analyze their asymptotic key rates against collective attacks and consider the security key rates under finite-size effects. Leveraging the characteristics of discrete modulation, we improve the quantum secret sharing scheme. Non-dealer participants only require simple phase shifters to complete quantum secret sharing. We also provide the general design of the MR-DM-CVQSS protocol.We conduct a comprehensive analysis of the improved protocol's performance, confirming that the enhancement through multi-ring M-PSK allows for longer-distance quantum key distribution. Additionally, it reduces the deployment complexity of the system, thereby increasing the practical value.展开更多
The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dyn...The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.展开更多
Efficient exploration in complex coordination tasks has been considered a challenging problem in multi-agent reinforcement learning(MARL). It is significantly more difficult for those tasks with latent variables that ...Efficient exploration in complex coordination tasks has been considered a challenging problem in multi-agent reinforcement learning(MARL). It is significantly more difficult for those tasks with latent variables that agents cannot directly observe. However, most of the existing latent variable discovery methods lack a clear representation of latent variables and an effective evaluation of the influence of latent variables on the agent. In this paper, we propose a new MARL algorithm based on the soft actor-critic method for complex continuous control tasks with confounders. It is called the multi-agent soft actor-critic with latent variable(MASAC-LV) algorithm, which uses variational inference theory to infer the compact latent variables representation space from a large amount of offline experience.Besides, we derive the counterfactual policy whose input has no latent variables and quantify the difference between the actual policy and the counterfactual policy via a distance function. This quantified difference is considered an intrinsic motivation that gives additional rewards based on how much the latent variable affects each agent. The proposed algorithm is evaluated on two collaboration tasks with confounders, and the experimental results demonstrate the effectiveness of MASAC-LV compared to other baseline algorithms.展开更多
Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the a...Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the acoustic vortices(AVs)which are formed by side lobes. In the near field, particles can be trapped in the valley region between the two annuli of the pressure peak, and cannot be moved to the vortex center. In this paper, a trapping method based on a sector transducer array is proposed, which is characterized by the continuously variable topological charge(CVTC). This acoustic field can not only enlarge the range of particle trapping but also improve the aggregation degree of the trapped particles. In the experiments, polyethylene particles with a diameter of 0.2 mm are trapped into the multi-annular valleys by the AV with a fixed topological charge. Nevertheless, by applying the CVTC, particles outside the radius of the AV can cross the pressure peak successfully and move to the vortex center. Theoretical studies are also verified by the experimental particles trapping using the AV with the continuous variation of three topological charges, and suggest the potential application of large-scale particle trapping in biomedical engineering.展开更多
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ...Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data.展开更多
A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under var...A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under various excitations.The layer number,the installation angle of the X-shaped structure,the stiffness,and the active control parameters are systematically analyzed.In addition,a prototype of the X-VSVI is manufactured,and vibration tests are carried out.The results show that the proposed X-VSVI has a superior adaptability to that of a traditional X-shaped mechanism,and shows excellent vibration isolation performance in response to different amplitudes and forms of excitations.Moreover,the vibration isolation efficiency of the device can be improved by appropriate adjustment of parameters.展开更多
In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies...In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies with different interior permanent magnet(IPM)arrangements are evolved and optimized under same constrains.Based on two-dimensional(2-D)finite element(FE)method,their electromagnetic performance at magnetization and demagnetization states is evaluated.It reveals that the iron bridge and rotor lamination region between constant PM(CPM)and variable PM(VPM)play an important role in torque density and flux regulation(FR)capabilities.Besides,the global efficiency can be improved in VFM machines by adjusting magnetization state(MS)under different operating conditions.展开更多
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly...The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.展开更多
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera...The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.展开更多
This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent ...This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.展开更多
An exploratory multinuclear magnetic resonance(MR)and magnetic resonance imaging(MRI)study was performed on lithium-ion battery cells with ^(7)Li,^(19)F,and ^(1)H measurements.A variable field superconducting magnet w...An exploratory multinuclear magnetic resonance(MR)and magnetic resonance imaging(MRI)study was performed on lithium-ion battery cells with ^(7)Li,^(19)F,and ^(1)H measurements.A variable field superconducting magnet with a fixed frequency parallel-plate radiofrequency(RF)probe was employed in the study.The magnetic field was changed to set the resonance frequency of each nucleus to the fixed RF probe frequency of 33.7 MHz.Two cartridge-like lithium-ion cells,with graphite anodes and LiNi_(0.5)Mn_(0.3)Co_(0.2)O_(2)(NMC)cathodes,were interrogated.One cell was pristine,and one was charged to a cell voltage of 4.2 V.The results presented demonstrate the great potential of the variable field magnet approach in multinuclear measurement of lithium-ion batteries.These methods open the door for developing faster and simpler methods for detecting,quantifying,and interpreting MR and MRI data from lithium-ion and other batteries.展开更多
Several studies on functionally graded materials(FGMs)have been done by researchers,but few studies have dealt with the impact of the modification of the properties of materials with regard to the functional propagati...Several studies on functionally graded materials(FGMs)have been done by researchers,but few studies have dealt with the impact of the modification of the properties of materials with regard to the functional propagation of the waves in plates.This work aims to explore the effects of changing compositional characteristics and the volume fraction of the constituent of plate materials regarding the wave propagation response of thick plates of FGM.This model is based on a higher-order theory and a new displacement field with four unknowns that introduce indeterminate integral variables with a hyperbolic arcsine function.The FGM plate is assumed to consist of a mixture of metal and ceramic,and its properties change depending on the power functions of the thickness of the plate,such as linear,quadratic,cubic,and inverse quadratic.By utilizing Hamilton’s principle,general formulae of the wave propagation were obtained to establish wave modes and phase velocity curves of the wave propagation in a functionally graded plate,including the effects of changing compositional characteristics of materials.展开更多
In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical m...In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m-2,particularly below 400 W m-2,with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m-2.As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately.展开更多
基金suppoited by an Alexander Graliam Bell Canada Graduate Scholarship-Doctoralsupported by an Ontario Graduate Scholarshipsupported by the Canada Research Chairs programme。
文摘Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy.
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金This research was founded by the Funds for Creative Research Groups of National Natural Science Foundation of China(Grant No.51921006)the National Natural Science Foundations of China(Grant No.51978224)+2 种基金the National Major Scientific Research Instrument Development Program of China(Grant No.51827811)the National Natural Science Foundation of China,(Grant No.52008141)the Shenzhen Technology Innovation Program(Grant Nos.JCYJ20170811160003571,JCYJ20180508152238111 and JCYJ20200109112803851).
文摘Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.12173047,12322306,12003046,12233009,and 12133002)support from the Youth Innovation Promotion Association of the Chinese Academy of Sciences(no.2022055 and 2023065)support from the National Key Research and Development Program of China,grants 2022YFF0503404 and 2019YFA0405504。
文摘Long period variable(LPV)stars are very promising distance indicators in the infrared bands.We selected asymptotic giant branch(AGB)stars in the Large and Small Magellanic Cloud(LMC and SMC)from the Gaia Data Release 3 LPV catalog,and classified them into oxygen-rich(O-rich)and carbon-rich(C-rich)AGB stars.Using the Wide-field Infrared Survey Explorer database,we determined the W1-and W2-band period-luminosity relations(PLRs)for each pulsation-mode sequence of AGB stars.The dispersion of the PLRs of O-rich AGB stars in sequences C'and C is relatively small,around 0.14 mag.The PLRs of LMC and SMC are consistent in each sequence.In the W2 band,the PLR of large-amplitude C-rich AGB stars is steeper than that of small-amplitude C-rich AGB stars,due to their more circumstellar dust.By two methods,we find that some PLR sequences of O-rich AGB stars in the LMC are dependent on metallicity.The coefficients of the metallicity effect areβ=-0.533±0.213 mag dex~1andβ=-0.767±0.158 mag dex~1for sequence C in W1 and W2 bands,respectively.The significance of the metallicity effect in W1 band for the four sequences is 2.2-3.5σ.Both of these imply that distance measurements using O-rich Mira may need to take the metallicity effect into account.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62071496,61901530,and 62061008)the Natural Science Foundation of Hunan Province of China(Grant No.2020JJ5767).
文摘In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security.
基金This study was supported by Basic Research Project from Jiangmen Science and Technology Bureau(Grant No.2220002000356)China University of Petroleum(Beijing)(Grand No.2462023BJRC007)The Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110376).
文摘In regard to unconventional oil reservoirs,the transient dual-porosity and triple-porosity models have been adopted to describe the fluid flow in the complex fracture network.It has been proven to cause inaccurate production evaluations because of the absence of matrix-macrofracture communication.In addition,most of the existing models are solved analytically based on Laplace transform and numerical inversion.Hence,an approximate analytical solution is derived directly in real-time space considering variable matrix blocks and simultaneous matrix depletion.To simplify the derivation,the simultaneous matrix depletion is divided into two parts:one part feeding the macrofractures and the other part feeding the microfractures.Then,a series of partial differential equations(PDEs)describing the transient flow and boundary conditions are constructed and solved analytically by integration.Finally,a relationship between oil rate and production time in real-time space is obtained.The new model is verified against classical analytical models.When the microfracture system and matrix-macrofracture communication is neglected,the result of the new model agrees with those obtained with the dual-porosity and triple-porosity model,respectively.Certainly,the new model also has an excellent agreement with the numerical model.The model is then applied to two actual tight oil wells completed in western Canada sedimentary basin.After identifying the flow regime,the solution suitably matches the field production data,and the model parameters are determined.Through these output parameters,we can accurately forecast the production and even estimate the petrophysical properties.
文摘Plants play an essential role in matter and energy transformations and are key messengers in the carbon and energy cycle. Net primary productivity (NPP) reflects the capability of plants to transform solar energy into photosynthesis. It is very sensible for factors affecting on vegetation variability such as climate, soils, plant characteristics and human activities. So, it can be used as an indicator of actual and potential trend of vegetation. In this study we used the actual NPP which was derived from MODIS to assess the response of NPP to climate variables in Gadarif State, from 2000 to 2010. The correlations between NPP and climate variables (temperature and precipitation) are calculated using Pearson’s Correlation Coefficient and ordinary least squares regression. The main results show the following 1) the correlation Coefficient between NPP and mean annual temperature is Somewhat negative for Feshaga, Rahd, Gadarif and Galabat areas and weakly negative in Faw area;2) the correlation Coefficient between NPP and annual total precipitation is weakly negative in Faw, Rahd and Galabat areas and somewhat negative in Galabat and Rahd areas. This study demonstrated that the correlation analysis between NPP and climate variables (precipitation and temperature) gives reliably result of NPP responses to climate variables that is clearly in a very large scale of study area.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61971348 and 61201194)。
文摘In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propose a multi-ring discrete modulation continuous variable quantum key sharing scheme(MR-DM-CVQSS). In this paper, we primarily compare single-ring and multi-ring M-symbol amplitude and phase-shift keying modulations. We analyze their asymptotic key rates against collective attacks and consider the security key rates under finite-size effects. Leveraging the characteristics of discrete modulation, we improve the quantum secret sharing scheme. Non-dealer participants only require simple phase shifters to complete quantum secret sharing. We also provide the general design of the MR-DM-CVQSS protocol.We conduct a comprehensive analysis of the improved protocol's performance, confirming that the enhancement through multi-ring M-PSK allows for longer-distance quantum key distribution. Additionally, it reduces the deployment complexity of the system, thereby increasing the practical value.
文摘The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.
基金supported in part by the National Natural Science Foundation of China (62136008,62236002,61921004,62173251,62103104)the “Zhishan” Scholars Programs of Southeast Universitythe Fundamental Research Funds for the Central Universities (2242023K30034)。
文摘Efficient exploration in complex coordination tasks has been considered a challenging problem in multi-agent reinforcement learning(MARL). It is significantly more difficult for those tasks with latent variables that agents cannot directly observe. However, most of the existing latent variable discovery methods lack a clear representation of latent variables and an effective evaluation of the influence of latent variables on the agent. In this paper, we propose a new MARL algorithm based on the soft actor-critic method for complex continuous control tasks with confounders. It is called the multi-agent soft actor-critic with latent variable(MASAC-LV) algorithm, which uses variational inference theory to infer the compact latent variables representation space from a large amount of offline experience.Besides, we derive the counterfactual policy whose input has no latent variables and quantify the difference between the actual policy and the counterfactual policy via a distance function. This quantified difference is considered an intrinsic motivation that gives additional rewards based on how much the latent variable affects each agent. The proposed algorithm is evaluated on two collaboration tasks with confounders, and the experimental results demonstrate the effectiveness of MASAC-LV compared to other baseline algorithms.
基金Project supported by the National Key R&D Program of China(Grant No.2023YFE0201900)。
文摘Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the acoustic vortices(AVs)which are formed by side lobes. In the near field, particles can be trapped in the valley region between the two annuli of the pressure peak, and cannot be moved to the vortex center. In this paper, a trapping method based on a sector transducer array is proposed, which is characterized by the continuously variable topological charge(CVTC). This acoustic field can not only enlarge the range of particle trapping but also improve the aggregation degree of the trapped particles. In the experiments, polyethylene particles with a diameter of 0.2 mm are trapped into the multi-annular valleys by the AV with a fixed topological charge. Nevertheless, by applying the CVTC, particles outside the radius of the AV can cross the pressure peak successfully and move to the vortex center. Theoretical studies are also verified by the experimental particles trapping using the AV with the continuous variation of three topological charges, and suggest the potential application of large-scale particle trapping in biomedical engineering.
文摘Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data.
基金Project supported by the National Natural Science Foundation of China(Nos.12022213,12002329,U23A2066,12272240,and 12002217)。
文摘A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under various excitations.The layer number,the installation angle of the X-shaped structure,the stiffness,and the active control parameters are systematically analyzed.In addition,a prototype of the X-VSVI is manufactured,and vibration tests are carried out.The results show that the proposed X-VSVI has a superior adaptability to that of a traditional X-shaped mechanism,and shows excellent vibration isolation performance in response to different amplitudes and forms of excitations.Moreover,the vibration isolation efficiency of the device can be improved by appropriate adjustment of parameters.
基金supported by the CRRC Zhuzhou Institute Company Ltd.and in part by Key R&D projects in Hunan+1 种基金ChinaNo.2022GK2062。
文摘In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies with different interior permanent magnet(IPM)arrangements are evolved and optimized under same constrains.Based on two-dimensional(2-D)finite element(FE)method,their electromagnetic performance at magnetization and demagnetization states is evaluated.It reveals that the iron bridge and rotor lamination region between constant PM(CPM)and variable PM(VPM)play an important role in torque density and flux regulation(FR)capabilities.Besides,the global efficiency can be improved in VFM machines by adjusting magnetization state(MS)under different operating conditions.
基金the Liaoning Province Nature Fundation Project(2022-MS-291)the National Programme for Foreign Expert Projects(G2022006008L)+2 种基金the Basic Research Projects of Liaoning Provincial Department of Education(LJKMZ20220781,LJKMZ20220783,LJKQZ20222457)King Saud University funded this study through theResearcher Support Program Number(RSPD2023R704)King Saud University,Riyadh,Saudi Arabia.
文摘The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.
基金supported in part by the Central Government Guides Local Science and TechnologyDevelopment Funds(Grant No.YDZJSX2021A038)in part by theNational Natural Science Foundation of China under(Grant No.61806138)in part by the China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)(Grant 2021FNA04014).
文摘The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.
基金supported by the National Natural Science Foundation of China(12126318,12126302).
文摘This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.
基金BJB thanks the Canada Chairs program for a Research Chair in MRI of Materials[950e230894]an NSERC Discovery Grant[2015-6122]GRG thanks NSERC for a Discovery Grant[RGPIN-2017-06095].
文摘An exploratory multinuclear magnetic resonance(MR)and magnetic resonance imaging(MRI)study was performed on lithium-ion battery cells with ^(7)Li,^(19)F,and ^(1)H measurements.A variable field superconducting magnet with a fixed frequency parallel-plate radiofrequency(RF)probe was employed in the study.The magnetic field was changed to set the resonance frequency of each nucleus to the fixed RF probe frequency of 33.7 MHz.Two cartridge-like lithium-ion cells,with graphite anodes and LiNi_(0.5)Mn_(0.3)Co_(0.2)O_(2)(NMC)cathodes,were interrogated.One cell was pristine,and one was charged to a cell voltage of 4.2 V.The results presented demonstrate the great potential of the variable field magnet approach in multinuclear measurement of lithium-ion batteries.These methods open the door for developing faster and simpler methods for detecting,quantifying,and interpreting MR and MRI data from lithium-ion and other batteries.
文摘Several studies on functionally graded materials(FGMs)have been done by researchers,but few studies have dealt with the impact of the modification of the properties of materials with regard to the functional propagation of the waves in plates.This work aims to explore the effects of changing compositional characteristics and the volume fraction of the constituent of plate materials regarding the wave propagation response of thick plates of FGM.This model is based on a higher-order theory and a new displacement field with four unknowns that introduce indeterminate integral variables with a hyperbolic arcsine function.The FGM plate is assumed to consist of a mixture of metal and ceramic,and its properties change depending on the power functions of the thickness of the plate,such as linear,quadratic,cubic,and inverse quadratic.By utilizing Hamilton’s principle,general formulae of the wave propagation were obtained to establish wave modes and phase velocity curves of the wave propagation in a functionally graded plate,including the effects of changing compositional characteristics of materials.
基金Innovation and Development Project of China Meteorological Administration(CXFZ2023J044)Innovation Foundation of CMA Public Meteorological Service Center(K2023002)+1 种基金“Tianchi Talents”Introduction Plan(2023)Key Innovation Team for Energy and Meteorology of China Meteorological Administration。
文摘In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m-2,particularly below 400 W m-2,with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m-2.As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately.