We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota b...We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota bilinear method,and analyze the dynamical behaviors of these nondegenerate solitons.The results show that the shapes of the nondegenerate solitons are controllable by selecting different wave numbers,varying diffraction and nonlinearity parameters.In addition,when all the variable coefficients are chosen to be constant,the solutions obtained in this study reduce to the shape-preserving nondegenerate solitons.Finally,it is found that the nondegenerate two-soliton solutions can be bounded to form a double-hump two-soliton molecule after making the velocity of one double-hump soliton resonate with that of the other one.展开更多
This article presents the construction of a nonlocal Hirota equation with variable coefficients and its Darboux transformation.Using zero-seed solutions,1-soliton and 2-soliton solutions of the equation are constructe...This article presents the construction of a nonlocal Hirota equation with variable coefficients and its Darboux transformation.Using zero-seed solutions,1-soliton and 2-soliton solutions of the equation are constructed through the Darboux transformation,along with the expression for N-soliton solutions.Influence of coefficients that are taken as a function of time instead of a constant,i.e.,coefficient functionδ(t),on the solutions is investigated by choosing the coefficient functionδ(t),and the dynamics of the solutions are analyzed.This article utilizes the Lax pair to construct infinite conservation laws and extends it to nonlocal equations.The study of infinite conservation laws for nonlocal equations holds significant implications for the integrability of nonlocal equations.展开更多
By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of ...By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.展开更多
This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational funct...This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics.展开更多
The cubic-quintic nonlinear Schroedinger equation (CQNLS) plays important parts in the optical fiber and the nuclear hydrodynamics. By using the homogeneous balance principle, the bell type, kink type, algebraic sol...The cubic-quintic nonlinear Schroedinger equation (CQNLS) plays important parts in the optical fiber and the nuclear hydrodynamics. By using the homogeneous balance principle, the bell type, kink type, algebraic solitary waves, and trigonometric traveling waves for the cubic-quintic nonlinear Schroedinger equation with variable coefficients (vCQNLS) are derived with the aid of a set of subsidiary high-order ordinary differential equations (sub-equations for short). The method used in this paper might help one to derive the exact solutions for the other high-order nonlinear evolution equations, and shows the new application of the homogeneous balance principle.展开更多
A variable coefficient viscoelastic equation with a time-varying delay in the boundary feedback and acoustic boundary conditions and nonlinear source term is considered.Under suitable assumptions, general decay result...A variable coefficient viscoelastic equation with a time-varying delay in the boundary feedback and acoustic boundary conditions and nonlinear source term is considered.Under suitable assumptions, general decay results of the energy are established via suitable Lyapunov functionals and some properties of the convex functions. Our result is obtained without imposing any restrictive growth assumption on the damping term and the elements of the matrix A and the kernel function g.展开更多
In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit ...In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit exact solutions, which contain multiple soliton-like and periodic solutions, are obtained for the (2+1)-dimensional OGKP equation with variable coetffcients.展开更多
We consider the identification problem of coefficients for vibrating systems described by a Euler-Bernoulli beam eq~. ation Or a string equation, with one end clamped and with an input exerted on the other end. For th...We consider the identification problem of coefficients for vibrating systems described by a Euler-Bernoulli beam eq~. ation Or a string equation, with one end clamped and with an input exerted on the other end. For the beam equation, the observations are the velocity and the angle velocity at the free end, while for the string equation, the observation is the velocity at the free end. In the framework of well-posed linear system theory, we show that both the density and the flexural rigidity of the beam, and the tension of the string, can be uniquely determined by the observations for all positive times. Moreover, a general constructive method is developed to show that the mass density and the elastic modulus of the string are not determined by the observation.展开更多
Based on the closed connections among the homogeneous balance (HB) method and Clarkson-KruSkal (CK) method, we study the similarity reductions of the generalized variable coefficients 2D KdV equation. In the meant...Based on the closed connections among the homogeneous balance (HB) method and Clarkson-KruSkal (CK) method, we study the similarity reductions of the generalized variable coefficients 2D KdV equation. In the meantime it is shown that this leads to a direct reduction in the form of ordinary differential equation under some integrability conditions between the variable coefficients. Two different cases have been discussed, the search for solutions of those ordinary differential equations yielded many exact travelling and solitonic wave solutions in the form of hyperbolic and trigonometric functions under some constraints between the variable coefficients.展开更多
By using the homogeneous balance principle(HBP), we derive a Backtund transformation(BT) to the generalized dispersive long wave equation with variable coefficients.Based on the BT, we give many kinds of the exact...By using the homogeneous balance principle(HBP), we derive a Backtund transformation(BT) to the generalized dispersive long wave equation with variable coefficients.Based on the BT, we give many kinds of the exact solutions of the equation, such as, singlesolitary solutions, multi-soliton solutions and generalized exact solutions.展开更多
In this paper, the symmetry method has been carried over to the generalized variable coefficients Zakharov- Kuznetsov equation. The infinitesimal symmetries and the optimal system are deduced and from this optimal sys...In this paper, the symmetry method has been carried over to the generalized variable coefficients Zakharov- Kuznetsov equation. The infinitesimal symmetries and the optimal system are deduced and from this optimal system seven basic fields are determined, and for every vector field in the optimal system the admissible forms of the coefficients are found and this also leads us to transform the given equation into partial differential equations in two variables. After using some referenced transformations the mentioned partial differential equations eventually reduce to ordinary differential equations. The search for solutions to those equations has yielded many exact solutions in most cases.展开更多
two-prey one-predator system with a special Holling-Ⅱ functional response is discussed. That w-periodic solution of the predator extinction is global asymptotically stable is proved by some new methods. Furthermore, ...two-prey one-predator system with a special Holling-Ⅱ functional response is discussed. That w-periodic solution of the predator extinction is global asymptotically stable is proved by some new methods. Furthermore, by the comparison theorem of impulsive differential equation, the sufficient conditions are derived for the permanence and the existence of periodic solution of the system.展开更多
In this paper, using the variable coefficient generalized projected Rieatti equation expansion method, we present explicit solutions of the (2+1)-dimensional variable coefficients Broer-Kaup (VCBK) equations. The...In this paper, using the variable coefficient generalized projected Rieatti equation expansion method, we present explicit solutions of the (2+1)-dimensional variable coefficients Broer-Kaup (VCBK) equations. These solutions include Weierstrass function solution, solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time. Because of the three or four arbitrary functions, rich localized excitations can be found.展开更多
In this paper, we obtain an explicit formula of general solution for a class of the non-homogeneous recurrence of variable coefficients with two indices.
Based on a method of finite element model and combined with matrix theory, a method for solving differential equation with variable coefficients is proposed. With the method, it is easy to deal with the differential e...Based on a method of finite element model and combined with matrix theory, a method for solving differential equation with variable coefficients is proposed. With the method, it is easy to deal with the differential equations with variable coefficients. On most occasions and due to the nonuniformity nature, nonlinearity property can cause the equations of the kinds. Using the model, the satisfactory valuable results with only a few units can be obtained.展开更多
In practice, it is very difficult to find the solution of recurrence relation by using the characteristic roots. By applying iteration and induction we present an explicit formula of general solution for a class of ho...In practice, it is very difficult to find the solution of recurrence relation by using the characteristic roots. By applying iteration and induction we present an explicit formula of general solution for a class of homogeneous trinomial recurrence of variable coefficients with two indices. It provides a concrete and applicable model to solve the relevant problem with computer.展开更多
With the help of the variable-coefficient generalized projected Ricatti equation expansion method, we present exact solutions for the generalized (2+1)-dimensional nonlinear SchrSdinger equation with variable coeff...With the help of the variable-coefficient generalized projected Ricatti equation expansion method, we present exact solutions for the generalized (2+1)-dimensional nonlinear SchrSdinger equation with variable coefficients. These solutions include solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time.展开更多
There is a close relationship between the Painlevéintegrability and other integrability of nonlinear evolution equation.By using the Weiss-Tabor-Carnevale(WTC)method and the symbolic computation of Maple,the Pain...There is a close relationship between the Painlevéintegrability and other integrability of nonlinear evolution equation.By using the Weiss-Tabor-Carnevale(WTC)method and the symbolic computation of Maple,the Painlevétest is used for the higher order generalized non-autonomous equation and the third order Korteweg-de Vries equation with variable coefficients.Finally the Painlevéintegrability condition of this equation is gotten.展开更多
In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial deriv...In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial derivative term and the forward and backward Euler method to discretize the time derivative term, the explicit and implicit upwind difference schemes are obtained respectively. It is proved that the explicit upwind scheme is conditionally stable and the implicit upwind scheme is unconditionally stable. Then the convergence of the schemes is derived. Numerical examples verify the results of theoretical analysis.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.11975204 and 12075208)the Project of Zhoushan City Science and Technology Bureau (Grant No.2021C21015)the Training Program for Leading Talents in Universities of Zhejiang Province。
文摘We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota bilinear method,and analyze the dynamical behaviors of these nondegenerate solitons.The results show that the shapes of the nondegenerate solitons are controllable by selecting different wave numbers,varying diffraction and nonlinearity parameters.In addition,when all the variable coefficients are chosen to be constant,the solutions obtained in this study reduce to the shape-preserving nondegenerate solitons.Finally,it is found that the nondegenerate two-soliton solutions can be bounded to form a double-hump two-soliton molecule after making the velocity of one double-hump soliton resonate with that of the other one.
基金supported by the National Natural Science Foundation of China (Grant No.11505090)Liaocheng University Level Science and Technology Research Fund (Grant No.318012018)+2 种基金Discipline with Strong Characteristics of Liaocheng University–Intelligent Science and Technology (Grant No.319462208)Research Award Foundation for Outstanding Young Scientists of Shandong Province (Grant No.BS2015SF009)the Doctoral Foundation of Liaocheng University (Grant No.318051413)。
文摘This article presents the construction of a nonlocal Hirota equation with variable coefficients and its Darboux transformation.Using zero-seed solutions,1-soliton and 2-soliton solutions of the equation are constructed through the Darboux transformation,along with the expression for N-soliton solutions.Influence of coefficients that are taken as a function of time instead of a constant,i.e.,coefficient functionδ(t),on the solutions is investigated by choosing the coefficient functionδ(t),and the dynamics of the solutions are analyzed.This article utilizes the Lax pair to construct infinite conservation laws and extends it to nonlocal equations.The study of infinite conservation laws for nonlocal equations holds significant implications for the integrability of nonlocal equations.
基金Project supported by the National Natural Science Foundation of China(Grant No 10461006), the High Education Science Research Program(Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University(Grant No QN005023).
文摘By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 2010B17914) and the National Natural Science Foundation of China (Grant No. 10926162).
文摘This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics.
基金The project supported in part by Natural Science Foundation of Henan Province of China under Grant No. 2006110002 and the Science Foundation of Henan University of Science and Technology under Grant No. 2004ZD002
文摘The cubic-quintic nonlinear Schroedinger equation (CQNLS) plays important parts in the optical fiber and the nuclear hydrodynamics. By using the homogeneous balance principle, the bell type, kink type, algebraic solitary waves, and trigonometric traveling waves for the cubic-quintic nonlinear Schroedinger equation with variable coefficients (vCQNLS) are derived with the aid of a set of subsidiary high-order ordinary differential equations (sub-equations for short). The method used in this paper might help one to derive the exact solutions for the other high-order nonlinear evolution equations, and shows the new application of the homogeneous balance principle.
文摘A variable coefficient viscoelastic equation with a time-varying delay in the boundary feedback and acoustic boundary conditions and nonlinear source term is considered.Under suitable assumptions, general decay results of the energy are established via suitable Lyapunov functionals and some properties of the convex functions. Our result is obtained without imposing any restrictive growth assumption on the damping term and the elements of the matrix A and the kernel function g.
基金The project supported by the Natural Science Foundation of Shandong Province under Grant Nos. 2004zx16 and Q2005A01
文摘In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit exact solutions, which contain multiple soliton-like and periodic solutions, are obtained for the (2+1)-dimensional OGKP equation with variable coetffcients.
基金the National Natural Science Foundation of China (No.K411331528)
文摘We consider the identification problem of coefficients for vibrating systems described by a Euler-Bernoulli beam eq~. ation Or a string equation, with one end clamped and with an input exerted on the other end. For the beam equation, the observations are the velocity and the angle velocity at the free end, while for the string equation, the observation is the velocity at the free end. In the framework of well-posed linear system theory, we show that both the density and the flexural rigidity of the beam, and the tension of the string, can be uniquely determined by the observations for all positive times. Moreover, a general constructive method is developed to show that the mass density and the elastic modulus of the string are not determined by the observation.
文摘Based on the closed connections among the homogeneous balance (HB) method and Clarkson-KruSkal (CK) method, we study the similarity reductions of the generalized variable coefficients 2D KdV equation. In the meantime it is shown that this leads to a direct reduction in the form of ordinary differential equation under some integrability conditions between the variable coefficients. Two different cases have been discussed, the search for solutions of those ordinary differential equations yielded many exact travelling and solitonic wave solutions in the form of hyperbolic and trigonometric functions under some constraints between the variable coefficients.
基金Supported by the Natural Science Foundation of Education Committee of Henan Province(2003110003)
文摘By using the homogeneous balance principle(HBP), we derive a Backtund transformation(BT) to the generalized dispersive long wave equation with variable coefficients.Based on the BT, we give many kinds of the exact solutions of the equation, such as, singlesolitary solutions, multi-soliton solutions and generalized exact solutions.
文摘In this paper, the symmetry method has been carried over to the generalized variable coefficients Zakharov- Kuznetsov equation. The infinitesimal symmetries and the optimal system are deduced and from this optimal system seven basic fields are determined, and for every vector field in the optimal system the admissible forms of the coefficients are found and this also leads us to transform the given equation into partial differential equations in two variables. After using some referenced transformations the mentioned partial differential equations eventually reduce to ordinary differential equations. The search for solutions to those equations has yielded many exact solutions in most cases.
基金Supported by the Education Department Natural Science Foundation of Henan Province (2008A180041)
文摘two-prey one-predator system with a special Holling-Ⅱ functional response is discussed. That w-periodic solution of the predator extinction is global asymptotically stable is proved by some new methods. Furthermore, by the comparison theorem of impulsive differential equation, the sufficient conditions are derived for the permanence and the existence of periodic solution of the system.
基金The project supported by National Natural Science Foundation of China undcr Grant No. 10172056 .
文摘In this paper, using the variable coefficient generalized projected Rieatti equation expansion method, we present explicit solutions of the (2+1)-dimensional variable coefficients Broer-Kaup (VCBK) equations. These solutions include Weierstrass function solution, solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time. Because of the three or four arbitrary functions, rich localized excitations can be found.
基金Supported by the National Natural Science Foundation of China(19771063)
文摘In this paper, we obtain an explicit formula of general solution for a class of the non-homogeneous recurrence of variable coefficients with two indices.
文摘Based on a method of finite element model and combined with matrix theory, a method for solving differential equation with variable coefficients is proposed. With the method, it is easy to deal with the differential equations with variable coefficients. On most occasions and due to the nonuniformity nature, nonlinearity property can cause the equations of the kinds. Using the model, the satisfactory valuable results with only a few units can be obtained.
文摘In practice, it is very difficult to find the solution of recurrence relation by using the characteristic roots. By applying iteration and induction we present an explicit formula of general solution for a class of homogeneous trinomial recurrence of variable coefficients with two indices. It provides a concrete and applicable model to solve the relevant problem with computer.
文摘In this paper, we obtain an explicit formula of general solution for a class of the homogeneous recurrence of variable coefficients with two indices.
基金Supported by the Science Research Foundation of Zhanjiang Normal University(L0803)
文摘With the help of the variable-coefficient generalized projected Ricatti equation expansion method, we present exact solutions for the generalized (2+1)-dimensional nonlinear SchrSdinger equation with variable coefficients. These solutions include solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time.
基金Supported by the Shanxi Education Department Project(Grant No.J2020398)Key Natural Science Projects of Shanxi Energy Institute(Grant No.ZZ-2018003)。
文摘There is a close relationship between the Painlevéintegrability and other integrability of nonlinear evolution equation.By using the Weiss-Tabor-Carnevale(WTC)method and the symbolic computation of Maple,the Painlevétest is used for the higher order generalized non-autonomous equation and the third order Korteweg-de Vries equation with variable coefficients.Finally the Painlevéintegrability condition of this equation is gotten.
文摘In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial derivative term and the forward and backward Euler method to discretize the time derivative term, the explicit and implicit upwind difference schemes are obtained respectively. It is proved that the explicit upwind scheme is conditionally stable and the implicit upwind scheme is unconditionally stable. Then the convergence of the schemes is derived. Numerical examples verify the results of theoretical analysis.