The dynamics of a solid spherical body in an oscillating liquid flow in a vertical axisymmetric channel of variable cross section is experimentally studied.It is shown that the oscillating liquid leads to the generati...The dynamics of a solid spherical body in an oscillating liquid flow in a vertical axisymmetric channel of variable cross section is experimentally studied.It is shown that the oscillating liquid leads to the generation of intense averaged flows in each of the channel segments.The intensity and direction of these flows depend on the dimensionless oscillating frequency.In the region of studied frequencies,the dynamics of the considered body is examined when the primary vortices emerging in the flow occupy the whole region in each segment.For a fixed frequency,an increase in the oscillation amplitude leads to a phase-inclusion holding effect,i.e.,the body occupies a quasi-stationary position in one of the cells of the vertical channel,while oscillating around its average position.It is also shown that the oscillating motion of a liquid column generates an averaged force acting on the body,the magnitude of which depends on the properties of the body and its position in the channel.The quasi-stationary position is determined by the relative density and size of the body,as well as the dimensionless frequency.The behavior of the body as a function of the amplitude and frequency of fluid oscillation and relative size is discussed in detail.Such findings may be used in the future to control the position of a phase inclusion and/or to strengthen mass transfer effects in a channel of variable cross section by means of fluid oscillations.展开更多
In this paper by means of the exact analytic method [1], the general solution fordynamic response of nonhomogeneous beam with variable cross section is obtained un-der arbitrary resonant load and boundary conditions. ...In this paper by means of the exact analytic method [1], the general solution fordynamic response of nonhomogeneous beam with variable cross section is obtained un-der arbitrary resonant load and boundary conditions. The problem is reduced to solvea non-positive differential equation. Generally, it is not solved by variational method.By the present method, the general solution for this problem may be written as an ana-lytic form. Hence, it is convenient for structure optimizing problem. In this paper, itsconvergence is proved. Numerical examples are given at the end of the paper. which in-dicates satisfactory results can be obtained.展开更多
3 D roll-forming for high strength steel sheets is a new technology at present.Double racks gear 3D roll forming machine developed by our research group can be used to perform variable cross section roll forming for h...3 D roll-forming for high strength steel sheets is a new technology at present.Double racks gear 3D roll forming machine developed by our research group can be used to perform variable cross section roll forming for high strength steel.In the paper,a dynamic model of 8-DOF double rack gear 3D roll-forming machine is established by the method of Lagrange equation.The expression of the angle acceleration of the system response is obtained by solving the dynamic equations.Through an actual engineering example,the dynamical characters of the 3D roll forming machine are revealed.The results can support the design of 3D roll forming machine.Meanwhile,the research will play an active role in the development of control system.展开更多
文摘The dynamics of a solid spherical body in an oscillating liquid flow in a vertical axisymmetric channel of variable cross section is experimentally studied.It is shown that the oscillating liquid leads to the generation of intense averaged flows in each of the channel segments.The intensity and direction of these flows depend on the dimensionless oscillating frequency.In the region of studied frequencies,the dynamics of the considered body is examined when the primary vortices emerging in the flow occupy the whole region in each segment.For a fixed frequency,an increase in the oscillation amplitude leads to a phase-inclusion holding effect,i.e.,the body occupies a quasi-stationary position in one of the cells of the vertical channel,while oscillating around its average position.It is also shown that the oscillating motion of a liquid column generates an averaged force acting on the body,the magnitude of which depends on the properties of the body and its position in the channel.The quasi-stationary position is determined by the relative density and size of the body,as well as the dimensionless frequency.The behavior of the body as a function of the amplitude and frequency of fluid oscillation and relative size is discussed in detail.Such findings may be used in the future to control the position of a phase inclusion and/or to strengthen mass transfer effects in a channel of variable cross section by means of fluid oscillations.
文摘In this paper by means of the exact analytic method [1], the general solution fordynamic response of nonhomogeneous beam with variable cross section is obtained un-der arbitrary resonant load and boundary conditions. The problem is reduced to solvea non-positive differential equation. Generally, it is not solved by variational method.By the present method, the general solution for this problem may be written as an ana-lytic form. Hence, it is convenient for structure optimizing problem. In this paper, itsconvergence is proved. Numerical examples are given at the end of the paper. which in-dicates satisfactory results can be obtained.
基金Supported by the National Science and Technology Supporting Plan Projects of China (No.2011BAG03B03).
文摘3 D roll-forming for high strength steel sheets is a new technology at present.Double racks gear 3D roll forming machine developed by our research group can be used to perform variable cross section roll forming for high strength steel.In the paper,a dynamic model of 8-DOF double rack gear 3D roll-forming machine is established by the method of Lagrange equation.The expression of the angle acceleration of the system response is obtained by solving the dynamic equations.Through an actual engineering example,the dynamical characters of the 3D roll forming machine are revealed.The results can support the design of 3D roll forming machine.Meanwhile,the research will play an active role in the development of control system.