An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper.The properties of Euler wavelets and their operational matrix together with a family of...An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper.The properties of Euler wavelets and their operational matrix together with a family of piecewise functions are first presented.Then they are utilized to reduce the problem to the solution of a nonlinear system of algebraic equations.And the convergence of the Euler wavelets basis is given.The method is computationally attractive and some numerical examples are provided to illustrate its high accuracy.展开更多
This paper is concerned with the following variable-order fractional Laplacian equations , where N ≥ 1 and N > 2s(x,y) for (x,y) ∈ Ω × Ω, Ω is a bounded domain in R<sup>N</sup>, s(⋅)...This paper is concerned with the following variable-order fractional Laplacian equations , where N ≥ 1 and N > 2s(x,y) for (x,y) ∈ Ω × Ω, Ω is a bounded domain in R<sup>N</sup>, s(⋅) ∈ C (R<sup>N</sup> × R<sup>N</sup>, (0,1)), (-Δ)<sup>s(⋅)</sup> is the variable-order fractional Laplacian operator, λ, μ > 0 are two parameters, V: Ω → [0, ∞) is a continuous function, f ∈ C(Ω × R) and q ∈ C(Ω). Under some suitable conditions on f, we obtain two solutions for this problem by employing the mountain pass theorem and Ekeland’s variational principle. Our result generalizes the related ones in the literature.展开更多
In this article, Crank-Nicolson method is used to study the variable order fractional cable equation. The variable order fractional derivatives are described in the Riemann- Liouville and the Griinwald-Letnikov sense....In this article, Crank-Nicolson method is used to study the variable order fractional cable equation. The variable order fractional derivatives are described in the Riemann- Liouville and the Griinwald-Letnikov sense. The stability analysis of the proposed technique is discussed. Numerical results are provided and compared with exact solutions to show the accuracy of the proposed technique.展开更多
In this article, a new application to find the exact solutions of nonlinear partial time-space fractional differential Equation has been discussed. Firstly, the fractional complex transformation has been implemented t...In this article, a new application to find the exact solutions of nonlinear partial time-space fractional differential Equation has been discussed. Firstly, the fractional complex transformation has been implemented to convert nonlinear partial fractional differential Equations into nonlinear ordinary differential Equations. Afterwards, the (G'/G)-expansion method has been implemented, to celebrate the exact solutions of these Equations, in the sense of modified Riemann-Liouville derivative. As application, the exact solutions of time-space fractional Burgers’ Equation have been discussed.展开更多
In this article, the modified simple equation method has been extended to celebrate the exact solutions of nonlinear partial time-space differential equations of fractional order. Firstly, the fractional complex trans...In this article, the modified simple equation method has been extended to celebrate the exact solutions of nonlinear partial time-space differential equations of fractional order. Firstly, the fractional complex transformation has been implemented to convert nonlinear partial fractional differential equations into nonlinear ordinary differential equations. Afterwards, modified simple equation method has been implemented, to find the exact solutions of these equations, in the sense of modified Riemann-Liouville derivative. For applications, the exact solutions of time-space fractional derivative Burgers’ equation and time-space fractional derivative foam drainage equation have been discussed. Moreover, it can also be concluded that the proposed method is easy, direct and concise as compared to other existing methods.展开更多
We find an upper viscosity solution and give a proof of the existence-uniqueness in the space C^∞(t∈(0,∞);H2^s+2(R^n))∩C^0(t∈[0,∞);H^s(R^n)),s∈R,to the nonlinear time fractional equation of distribu...We find an upper viscosity solution and give a proof of the existence-uniqueness in the space C^∞(t∈(0,∞);H2^s+2(R^n))∩C^0(t∈[0,∞);H^s(R^n)),s∈R,to the nonlinear time fractional equation of distributed order with spatial Laplace operator subject to the Cauchy conditions ∫0^2p(β)D*^βu(x,t)dβ=△xu(x,t)+f(t,u(t,x)),t≥0,x∈R^n,u(0,x)=φ(x),ut(0,x)=ψ(x),(0.1) where △xis the spatial Laplace operator,D*^β is the operator of fractional differentiation in the Caputo sense and the force term F satisfies the Assumption 1 on the regularity and growth. For the weight function we take a positive-linear combination of delta distributions concentrated at points of interval (0, 2), i.e., p(β) =m∑k=1bkδ(β-βk),0〈βk〈2,bk〉0,k=1,2,…,m.The regularity of the solution is established in the framework of the space C^∞(t∈(0,∞);C^∞(R^n))∩C^0(t∈[0,∞);C^∞(R^n))when the initial data belong to the Sobolev space H2^8(R^n),s∈R.展开更多
This paper obtains some solutions of the 5th-order mKdV equation by using the exponential-fraction trial function method, such as solitary wave solutions, shock wave solutions and the hopping wave solutions. It succes...This paper obtains some solutions of the 5th-order mKdV equation by using the exponential-fraction trial function method, such as solitary wave solutions, shock wave solutions and the hopping wave solutions. It successfully shows that this method may be valid for solving other nonlinear partial differential equations.展开更多
In this paper, the authors study the blow-up of solution for a class of nonlinear Schrodinger equation for some initial boundary problem. On the other hand, the authors give out some analyses and that new conclusion b...In this paper, the authors study the blow-up of solution for a class of nonlinear Schrodinger equation for some initial boundary problem. On the other hand, the authors give out some analyses and that new conclusion by Eigen-function method. In last section, the authors check the nonlinear parameter for light rule power by using of parameter method to get ground state and excite state correspond case, and discuss the global attractor of some fraction order case, and combine numerical test. To illustrate this physics meaning in dimension d = 1, 2 case. So, by numerable solution to give out these wave expression.展开更多
The main objective of this paper is to present an efficient structure-preserving scheme,which is based on the idea of the scalar auxiliary variable approach,for solving the twodimensional space-fractional nonlinear Sc...The main objective of this paper is to present an efficient structure-preserving scheme,which is based on the idea of the scalar auxiliary variable approach,for solving the twodimensional space-fractional nonlinear Schrodinger equation.First,we reformulate the equation as an canonical Hamiltonian system,and obtain a new equivalent system via introducing a scalar variable.Then,we construct a semi-discrete energy-preserving scheme by using the Fourier pseudo-spectral method to discretize the equivalent system in space direction.After that,applying the Crank-Nicolson method on the temporal direction gives a linearly-implicit scheme in the fully-discrete version.As expected,the proposed scheme can preserve the energy exactly and more efficient in the sense that only decoupled equations with constant coefficients need to be solved at each time step.Finally,numerical experiments are provided to demonstrate the efficiency and conservation of the scheme.展开更多
In this paper,we firstly present a novel simple method based on a Picard integral type formulation for the nonlinear multi-dimensional variable coefficient fourthorder advection-dispersion equation with the time fract...In this paper,we firstly present a novel simple method based on a Picard integral type formulation for the nonlinear multi-dimensional variable coefficient fourthorder advection-dispersion equation with the time fractional derivative order a2(1,2).A new unknown function v(x,t)=■u(x,t)/■t is introduced and u(x,t)is recovered using the trapezoidal formula.As a result of the variable v(x,t)are introduced in each time step,the constraints of traditional plans considering the non-integer time situation of u(x,t)is no longer considered.The stability and solvability are proved with detailed proofs and the precise describe of error estimates is derived.Further,Chebyshev spectral collocation method supports accurate and efficient variable coefficient model with variable coefficients.Several numerical results are obtained and analyzed in multi-dimensional spatial domains and numerical convergence order are consistent with the theoretical value 3-a order for different a under infinite norm.展开更多
Fractional order nonlinear evolution equations have emerged in recent times as being very important model for depicting the interior behavior of nonlinear phenomena that exist in the real world.In particular,Schroding...Fractional order nonlinear evolution equations have emerged in recent times as being very important model for depicting the interior behavior of nonlinear phenomena that exist in the real world.In particular,Schrodinger-type fractional nonlinear evolution equations constitute an aspect of the field of quantum mechanics.In this study,the(2+1)-dimensional time-fractional nonlinear Schrodinger equation and(1+1)-dimensional time-space fractional nonlinear Schrodinger equation are revealed as having different and novel wave structures.This is shown by constructing appropriate analytic wave solutions.A success-ful implementation of the advised rational(1/φ'(ξ))-expansion method generates new outcomes of the considered equations,by comparing them with those already noted in the literature.On the basis of the conformable fractional derivative,a composite wave variable conversion has been used to adapt the suggested equations into the differential equations with a single independent variable before applying the scheme.Finally,the well-furnished outcomes are plotted in different 3D and 2D profiles for the purpose of illustrating various physical characteristics of wave structures.The employed technique is competent,productive and concise enough,making it feasible for future studies.展开更多
In this paper, the nonlinear Hunter–Saxton equation, which is a famous partial differential equation,is solved by using a hybrid numerical method based on the quasilinearization method and the bivariate generalized f...In this paper, the nonlinear Hunter–Saxton equation, which is a famous partial differential equation,is solved by using a hybrid numerical method based on the quasilinearization method and the bivariate generalized fractional order of the Chebyshev functions(B-GFCF) collocation method. First, using the quasilinearization method,the equation is converted into a sequence of linear partial differential equations(LPD), and then these LPDs are solved using the B-GFCF collocation method. A very good approximation of solutions is obtained, and comparisons show that the obtained results are more accurate than the results of other researchers.展开更多
基金The authors are grateful to the editor,the associate editor and the anonymous reviewers for their constructive and helpful comments.This work was supported by the Zhejiang Provincial Natural Science Foundation of China(No.LY18A010026),the National Natural Science Foundation of China(No.11701304,11526117)Zhejiang Provincial Natural Science Foundation of China(No.LQ16A010006)+1 种基金the Natural Science Foundation of Ningbo City,China(No.2017A610143)the Natural Science Foundation of Ningbo City,China(2018A610195).
文摘An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper.The properties of Euler wavelets and their operational matrix together with a family of piecewise functions are first presented.Then they are utilized to reduce the problem to the solution of a nonlinear system of algebraic equations.And the convergence of the Euler wavelets basis is given.The method is computationally attractive and some numerical examples are provided to illustrate its high accuracy.
文摘This paper is concerned with the following variable-order fractional Laplacian equations , where N ≥ 1 and N > 2s(x,y) for (x,y) ∈ Ω × Ω, Ω is a bounded domain in R<sup>N</sup>, s(⋅) ∈ C (R<sup>N</sup> × R<sup>N</sup>, (0,1)), (-Δ)<sup>s(⋅)</sup> is the variable-order fractional Laplacian operator, λ, μ > 0 are two parameters, V: Ω → [0, ∞) is a continuous function, f ∈ C(Ω × R) and q ∈ C(Ω). Under some suitable conditions on f, we obtain two solutions for this problem by employing the mountain pass theorem and Ekeland’s variational principle. Our result generalizes the related ones in the literature.
文摘In this article, Crank-Nicolson method is used to study the variable order fractional cable equation. The variable order fractional derivatives are described in the Riemann- Liouville and the Griinwald-Letnikov sense. The stability analysis of the proposed technique is discussed. Numerical results are provided and compared with exact solutions to show the accuracy of the proposed technique.
文摘In this article, a new application to find the exact solutions of nonlinear partial time-space fractional differential Equation has been discussed. Firstly, the fractional complex transformation has been implemented to convert nonlinear partial fractional differential Equations into nonlinear ordinary differential Equations. Afterwards, the (G'/G)-expansion method has been implemented, to celebrate the exact solutions of these Equations, in the sense of modified Riemann-Liouville derivative. As application, the exact solutions of time-space fractional Burgers’ Equation have been discussed.
文摘In this article, the modified simple equation method has been extended to celebrate the exact solutions of nonlinear partial time-space differential equations of fractional order. Firstly, the fractional complex transformation has been implemented to convert nonlinear partial fractional differential equations into nonlinear ordinary differential equations. Afterwards, modified simple equation method has been implemented, to find the exact solutions of these equations, in the sense of modified Riemann-Liouville derivative. For applications, the exact solutions of time-space fractional derivative Burgers’ equation and time-space fractional derivative foam drainage equation have been discussed. Moreover, it can also be concluded that the proposed method is easy, direct and concise as compared to other existing methods.
基金Partially supported by projects:MNTR:174024APV:114-451-3605/2013
文摘We find an upper viscosity solution and give a proof of the existence-uniqueness in the space C^∞(t∈(0,∞);H2^s+2(R^n))∩C^0(t∈[0,∞);H^s(R^n)),s∈R,to the nonlinear time fractional equation of distributed order with spatial Laplace operator subject to the Cauchy conditions ∫0^2p(β)D*^βu(x,t)dβ=△xu(x,t)+f(t,u(t,x)),t≥0,x∈R^n,u(0,x)=φ(x),ut(0,x)=ψ(x),(0.1) where △xis the spatial Laplace operator,D*^β is the operator of fractional differentiation in the Caputo sense and the force term F satisfies the Assumption 1 on the regularity and growth. For the weight function we take a positive-linear combination of delta distributions concentrated at points of interval (0, 2), i.e., p(β) =m∑k=1bkδ(β-βk),0〈βk〈2,bk〉0,k=1,2,…,m.The regularity of the solution is established in the framework of the space C^∞(t∈(0,∞);C^∞(R^n))∩C^0(t∈[0,∞);C^∞(R^n))when the initial data belong to the Sobolev space H2^8(R^n),s∈R.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10575082 and 10247008).
文摘This paper obtains some solutions of the 5th-order mKdV equation by using the exponential-fraction trial function method, such as solitary wave solutions, shock wave solutions and the hopping wave solutions. It successfully shows that this method may be valid for solving other nonlinear partial differential equations.
文摘In this paper, the authors study the blow-up of solution for a class of nonlinear Schrodinger equation for some initial boundary problem. On the other hand, the authors give out some analyses and that new conclusion by Eigen-function method. In last section, the authors check the nonlinear parameter for light rule power by using of parameter method to get ground state and excite state correspond case, and discuss the global attractor of some fraction order case, and combine numerical test. To illustrate this physics meaning in dimension d = 1, 2 case. So, by numerable solution to give out these wave expression.
基金supported by the National Natural Science Foundation of China(Grant Nos.12171245,11971416,11971242)the Natural Science Foundation of Henan Province(No.222300420280)the Program for Scientific and Technological Innovation Talents in Universities of Henan Province(No.22HASTIT018).
文摘The main objective of this paper is to present an efficient structure-preserving scheme,which is based on the idea of the scalar auxiliary variable approach,for solving the twodimensional space-fractional nonlinear Schrodinger equation.First,we reformulate the equation as an canonical Hamiltonian system,and obtain a new equivalent system via introducing a scalar variable.Then,we construct a semi-discrete energy-preserving scheme by using the Fourier pseudo-spectral method to discretize the equivalent system in space direction.After that,applying the Crank-Nicolson method on the temporal direction gives a linearly-implicit scheme in the fully-discrete version.As expected,the proposed scheme can preserve the energy exactly and more efficient in the sense that only decoupled equations with constant coefficients need to be solved at each time step.Finally,numerical experiments are provided to demonstrate the efficiency and conservation of the scheme.
文摘In this paper,we firstly present a novel simple method based on a Picard integral type formulation for the nonlinear multi-dimensional variable coefficient fourthorder advection-dispersion equation with the time fractional derivative order a2(1,2).A new unknown function v(x,t)=■u(x,t)/■t is introduced and u(x,t)is recovered using the trapezoidal formula.As a result of the variable v(x,t)are introduced in each time step,the constraints of traditional plans considering the non-integer time situation of u(x,t)is no longer considered.The stability and solvability are proved with detailed proofs and the precise describe of error estimates is derived.Further,Chebyshev spectral collocation method supports accurate and efficient variable coefficient model with variable coefficients.Several numerical results are obtained and analyzed in multi-dimensional spatial domains and numerical convergence order are consistent with the theoretical value 3-a order for different a under infinite norm.
基金the support provided by CONACyT:Cátedras CONACyT para jóvenes investigadores 2014 and SNI-CONACyTthe support given by the DINVP-Universidad Iberoamericana.
文摘Fractional order nonlinear evolution equations have emerged in recent times as being very important model for depicting the interior behavior of nonlinear phenomena that exist in the real world.In particular,Schrodinger-type fractional nonlinear evolution equations constitute an aspect of the field of quantum mechanics.In this study,the(2+1)-dimensional time-fractional nonlinear Schrodinger equation and(1+1)-dimensional time-space fractional nonlinear Schrodinger equation are revealed as having different and novel wave structures.This is shown by constructing appropriate analytic wave solutions.A success-ful implementation of the advised rational(1/φ'(ξ))-expansion method generates new outcomes of the considered equations,by comparing them with those already noted in the literature.On the basis of the conformable fractional derivative,a composite wave variable conversion has been used to adapt the suggested equations into the differential equations with a single independent variable before applying the scheme.Finally,the well-furnished outcomes are plotted in different 3D and 2D profiles for the purpose of illustrating various physical characteristics of wave structures.The employed technique is competent,productive and concise enough,making it feasible for future studies.
文摘In this paper, the nonlinear Hunter–Saxton equation, which is a famous partial differential equation,is solved by using a hybrid numerical method based on the quasilinearization method and the bivariate generalized fractional order of the Chebyshev functions(B-GFCF) collocation method. First, using the quasilinearization method,the equation is converted into a sequence of linear partial differential equations(LPD), and then these LPDs are solved using the B-GFCF collocation method. A very good approximation of solutions is obtained, and comparisons show that the obtained results are more accurate than the results of other researchers.