To compute the matching performance of diesel engine with variable geometry turboeharger(VGT), the formerly used program is improved through adjustment of turbine mass flow rate and efficiency characteristics. The c...To compute the matching performance of diesel engine with variable geometry turboeharger(VGT), the formerly used program is improved through adjustment of turbine mass flow rate and efficiency characteristics. The calculation result is applied to forecast the performance of J6110Z diesel engine with rotary-vaned VGT70, and to guide the improvement of engine fuel supply. The computed engine performance curve coincides with the experiment result well: the low-speed torque, fuel economy, exhaust temperature and boost pressure of the VGT engine are all improved.展开更多
A spatial motion mechanism was designed which could make all the nozzle vanes rotate a- round the center of ball with the same radius synchronously to realize control of the variable nozzle mixed-flow turbocharger (V...A spatial motion mechanism was designed which could make all the nozzle vanes rotate a- round the center of ball with the same radius synchronously to realize control of the variable nozzle mixed-flow turbocharger (VN-MT). The back and abdomen of the nozzle vane was designed as arc- shaped. A variable nozzle ring perfectly combined with the mixed-flow turbine was made available. The turbine geometric model of VN-MT was established through the computational fluid dynamics (CFD). Compared with nozzleless mixed-flow turbine, the flow range of variable nozzle mixed-flow turbine was broadened tremendously while the peak turbine efficiency point was lower slightly. Flow field analysis in turbine stage showed that the energy was larger and the blade load of rotor was lower than loss of the VN-MT under designed condition the nozzleless mixed-flow turbocharger.展开更多
The two development ways of turbocharger technology to solve the problem of matching performance with diesel were presented. The ways of waste valve gate turbocharger and variable geometry turbocharger can solve the p...The two development ways of turbocharger technology to solve the problem of matching performance with diesel were presented. The ways of waste valve gate turbocharger and variable geometry turbocharger can solve the problem of engine’s low speed torque and achieve lower smoke level. Especially for variable geometry turbocharger, it covers all conditions of engine. It can not only improve the low engine’s speed torque and keep the power performance at high engine speed, but also cover wide engine speed performance that keeps lower fuel consumption and exhaust gas temperature in full load and part load matching. The results of theory analysis and experiment research showed that it’s the ideal solution to solve the matching problem of diesel engines.展开更多
A turbocharged diesel engine model was built with the GT-Power software,and experimentally verified.Then two different control variables for the control of the variable geometry turbocharger(VGT)were described,and t...A turbocharged diesel engine model was built with the GT-Power software,and experimentally verified.Then two different control variables for the control of the variable geometry turbocharger(VGT)were described,and their distinct effects on engine performance,i.e.NOxand soot emissions and fuel consumption,were simulated and compared on the basis of this model.The results showed that NOxemissions decreased obviously with the increase of exhaust gas recirculation(EGR)rate at constant boost pressure condition,but soot emissions and fuel consumption considerably increased.It was a good way to reduce NOxemissions without increasing fuel consumption and soot emissions when VGT was controlled to maintain the excess oxygen ratio unchanged as EGR rate increases.展开更多
基金the Ministerial Level Advanced Research Foundation (37256)
文摘To compute the matching performance of diesel engine with variable geometry turboeharger(VGT), the formerly used program is improved through adjustment of turbine mass flow rate and efficiency characteristics. The calculation result is applied to forecast the performance of J6110Z diesel engine with rotary-vaned VGT70, and to guide the improvement of engine fuel supply. The computed engine performance curve coincides with the experiment result well: the low-speed torque, fuel economy, exhaust temperature and boost pressure of the VGT engine are all improved.
基金Supported by the National Natural Science Foundation of China(51009003)
文摘A spatial motion mechanism was designed which could make all the nozzle vanes rotate a- round the center of ball with the same radius synchronously to realize control of the variable nozzle mixed-flow turbocharger (VN-MT). The back and abdomen of the nozzle vane was designed as arc- shaped. A variable nozzle ring perfectly combined with the mixed-flow turbine was made available. The turbine geometric model of VN-MT was established through the computational fluid dynamics (CFD). Compared with nozzleless mixed-flow turbine, the flow range of variable nozzle mixed-flow turbine was broadened tremendously while the peak turbine efficiency point was lower slightly. Flow field analysis in turbine stage showed that the energy was larger and the blade load of rotor was lower than loss of the VN-MT under designed condition the nozzleless mixed-flow turbocharger.
文摘The two development ways of turbocharger technology to solve the problem of matching performance with diesel were presented. The ways of waste valve gate turbocharger and variable geometry turbocharger can solve the problem of engine’s low speed torque and achieve lower smoke level. Especially for variable geometry turbocharger, it covers all conditions of engine. It can not only improve the low engine’s speed torque and keep the power performance at high engine speed, but also cover wide engine speed performance that keeps lower fuel consumption and exhaust gas temperature in full load and part load matching. The results of theory analysis and experiment research showed that it’s the ideal solution to solve the matching problem of diesel engines.
基金Supported by Diesel Engine Development Program of MIIT(DEDP-1004)Natural Science Foundation of BIT(3030012211428)
文摘A turbocharged diesel engine model was built with the GT-Power software,and experimentally verified.Then two different control variables for the control of the variable geometry turbocharger(VGT)were described,and their distinct effects on engine performance,i.e.NOxand soot emissions and fuel consumption,were simulated and compared on the basis of this model.The results showed that NOxemissions decreased obviously with the increase of exhaust gas recirculation(EGR)rate at constant boost pressure condition,but soot emissions and fuel consumption considerably increased.It was a good way to reduce NOxemissions without increasing fuel consumption and soot emissions when VGT was controlled to maintain the excess oxygen ratio unchanged as EGR rate increases.