The article presents an effort to create dimensionless scaling correlations of the overall bed porosity in the case of magnetically assisted fluidization in a tapered vessel with external transverse magnetic field. Th...The article presents an effort to create dimensionless scaling correlations of the overall bed porosity in the case of magnetically assisted fluidization in a tapered vessel with external transverse magnetic field. This is a stand of portion of new branch in the magnetically assisted fluidization recently created concerning employment of tapered vessels. Dimensional analysis based on "pressure transform" of the initial set of variables and involving the magnetic granular Bond number has been applied to develop scaling relationships of dimensionless groups representing ratios of pressures created by the fluid flow, gravity and the magnetic field over an elementary volume of the fluidized bed. Special attention has been paid on the existing data correlations developed for non-magnetic beds and the links to the new ones especially developed for tapered magnetic counterparts. A special dimensionless variable Xp = (Ar△Dbt)1/3√RgMQ combining Archimedes and Rosensweig numbers has been conceived for porosity correlation. Data correlations have been performed by power-law, exponential decay and asymptotic functions with analysis of their adequacies and accuracies of approximation.展开更多
文摘The article presents an effort to create dimensionless scaling correlations of the overall bed porosity in the case of magnetically assisted fluidization in a tapered vessel with external transverse magnetic field. This is a stand of portion of new branch in the magnetically assisted fluidization recently created concerning employment of tapered vessels. Dimensional analysis based on "pressure transform" of the initial set of variables and involving the magnetic granular Bond number has been applied to develop scaling relationships of dimensionless groups representing ratios of pressures created by the fluid flow, gravity and the magnetic field over an elementary volume of the fluidized bed. Special attention has been paid on the existing data correlations developed for non-magnetic beds and the links to the new ones especially developed for tapered magnetic counterparts. A special dimensionless variable Xp = (Ar△Dbt)1/3√RgMQ combining Archimedes and Rosensweig numbers has been conceived for porosity correlation. Data correlations have been performed by power-law, exponential decay and asymptotic functions with analysis of their adequacies and accuracies of approximation.