To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an und...To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.展开更多
The paper concerns numerical analysis of pressure distribution of an oil film on the valve plate in the variable height gap of an axial piston pump. The analysis employs the finite element method. For determination of...The paper concerns numerical analysis of pressure distribution of an oil film on the valve plate in the variable height gap of an axial piston pump. The analysis employs the finite element method. For determination of oil pressure variations in the gap, the Reynolds equation, commonly applied in the theory of lubrication, is applied. The equation is solved numerically with the use of self-developed program based on the finite element method. In order to obtain high accuracy of the results, an adaptive mesh refinement based on residual estimations of solution errors is applied. The calculation results are represented as dependent on the geometric and working parameters of the pump.展开更多
基金National Natural Science Foundation of China(Grant Nos.51925502,51575150).
文摘To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.
文摘The paper concerns numerical analysis of pressure distribution of an oil film on the valve plate in the variable height gap of an axial piston pump. The analysis employs the finite element method. For determination of oil pressure variations in the gap, the Reynolds equation, commonly applied in the theory of lubrication, is applied. The equation is solved numerically with the use of self-developed program based on the finite element method. In order to obtain high accuracy of the results, an adaptive mesh refinement based on residual estimations of solution errors is applied. The calculation results are represented as dependent on the geometric and working parameters of the pump.