A nonlinear transformation of the Whitham-Broer-Kaup (WBK) model equations in the shallow water small-amplitude regime is derived by using a simplified homogeneous balance method. The WBK model equations are linearize...A nonlinear transformation of the Whitham-Broer-Kaup (WBK) model equations in the shallow water small-amplitude regime is derived by using a simplified homogeneous balance method. The WBK model equations are linearized under the nonlinear transformation. Various exact solutions of the WBK model equations are obtained via the nonlinear transformation with the aid of solutions for the linear equation.展开更多
The assumption of M. Milankovich about the constancy of the Earth's albedo during the interglacial period was replaced with the alternative one. The model was developed where anomalies of the average annual temper...The assumption of M. Milankovich about the constancy of the Earth's albedo during the interglacial period was replaced with the alternative one. The model was developed where anomalies of the average annual temperature of the surface atmosphere were related with interannual changes in the planetary albedo and the thermal inertia of the hydrosphere. The surface temperature changes due to albedo actual and model changes were calculated. Possible external causes of albedo changes were considered.展开更多
文摘A nonlinear transformation of the Whitham-Broer-Kaup (WBK) model equations in the shallow water small-amplitude regime is derived by using a simplified homogeneous balance method. The WBK model equations are linearized under the nonlinear transformation. Various exact solutions of the WBK model equations are obtained via the nonlinear transformation with the aid of solutions for the linear equation.
文摘The assumption of M. Milankovich about the constancy of the Earth's albedo during the interglacial period was replaced with the alternative one. The model was developed where anomalies of the average annual temperature of the surface atmosphere were related with interannual changes in the planetary albedo and the thermal inertia of the hydrosphere. The surface temperature changes due to albedo actual and model changes were calculated. Possible external causes of albedo changes were considered.