The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly...The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.展开更多
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera...The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.展开更多
Instead of establishing mathematical hydraulic system models from physical laws usually done with the problems of complex modelling processes, low reliability and practicality caused by large uncertainties, a novel mo...Instead of establishing mathematical hydraulic system models from physical laws usually done with the problems of complex modelling processes, low reliability and practicality caused by large uncertainties, a novel modelling method for a highly nonlinear system of a hydraulic excavator is presented. Based on the data collected in the excavator's arms driving experiments, a data-based excavator dynamic model using Simplified Refined Instrumental Variable (SRIV) identification and estimation algorithms is established. The validity of the proposed data-based model is indirectly demonstrated by the performance of computer simulation and the.real machine motion control exoeriments.展开更多
A novel genetic algorithm (NGA) is proposed, which possesses micro-regulation and renascence operation. The optimized variable searching interval is regulated gradually according to the sub-group of excellent individu...A novel genetic algorithm (NGA) is proposed, which possesses micro-regulation and renascence operation. The optimized variable searching interval is regulated gradually according to the sub-group of excellent individuals. The NGA is used to optimize the parameters of the variable structure control (VSC), which satisfies the new reaching law and sliding mode. It is used in robot control systems. Simulation results are given.展开更多
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ...Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data.展开更多
This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent ...This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.展开更多
Coastal wetlands are characterized by complex patterns both in their geomorphlc and ecological teatures. Besides field observations, it is necessary to analyze the land cover of wetlands through the color infrared (...Coastal wetlands are characterized by complex patterns both in their geomorphlc and ecological teatures. Besides field observations, it is necessary to analyze the land cover of wetlands through the color infrared (CIR) aerial photography or remote sensing image. In this paper, we designed an evolving neural network classifier using variable string genetic algorithm (VGA) for the land cover classification of CIR aerial image. With the VGA, the classifier that we designed is able to evolve automatically the appropriate number of hidden nodes for modeling the neural network topology optimally and to find a near-optimal set of connection weights globally. Then, with backpropagation algorithm (BP), it can find the best connection weights. The VGA-BP classifier, which is derived from hybrid algorithms mentioned above, is demonstrated on CIR images classification effectively. Compared with standard classifiers, such as Bayes maximum-likelihood classifier, VGA classifier and BP-MLP (multi-layer perception) classifier, it has shown that the VGA-BP classifier can have better performance on highly resolution land cover classification.展开更多
In conventional computed tomography (CT) reconstruction based on fixed voltage, the projective data often ap- pear overexposed or underexposed, as a result, the reconstructive results are poor. To solve this problem...In conventional computed tomography (CT) reconstruction based on fixed voltage, the projective data often ap- pear overexposed or underexposed, as a result, the reconstructive results are poor. To solve this problem, variable voltage CT reconstruction has been proposed. The effective projective sequences of a structural component are obtained through the variable voltage. The total variation is adjusted and minimized to optimize the reconstructive results on the basis of iterative image using algebraic reconstruction technique (ART). In the process of reconstruction, the reconstructive image of low voltage is used as an initial value of the effective proiective reconstruction of the adjacent high voltage, and so on until to the highest voltage according to the gray weighted algorithm. Thereby the complete structural information is reconstructed. Simulation results show that the proposed algorithm can completely reflect the information of a complicated structural com- ponent, and the pixel values are more stable than those of the conventional.展开更多
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro...In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches.展开更多
Satisfactory results cannot be obtained when three-dimensional (3D) targets with complex maneuvering characteristics are tracked by the commonly used two-dimensional coordinated turn (2DCT) model. To address the probl...Satisfactory results cannot be obtained when three-dimensional (3D) targets with complex maneuvering characteristics are tracked by the commonly used two-dimensional coordinated turn (2DCT) model. To address the problem of 3D target tracking with strong maneuverability, on the basis of the modified three-dimensional variable turn (3DVT) model, an adaptive tracking algorithm is proposed by combining with the cubature Kalman filter (CKF) in this paper. Through ideology of real-time identification, the parameters of the model are changed to adjust the state transition matrix and the state noise covariance matrix. Therefore, states of the target are matched in real-time to achieve the purpose of adaptive tracking. Finally, four simulations are analyzed in different settings by the Monte Carlo method. All results show that the proposed algorithm can update parameters of the model and identify motion characteristics in real-time when targets tracking also has a better tracking accuracy.展开更多
Nonlinear equations systems(NESs)are widely used in real-world problems and they are difficult to solve due to their nonlinearity and multiple roots.Evolutionary algorithms(EAs)are one of the methods for solving NESs,...Nonlinear equations systems(NESs)are widely used in real-world problems and they are difficult to solve due to their nonlinearity and multiple roots.Evolutionary algorithms(EAs)are one of the methods for solving NESs,given their global search capabilities and ability to locate multiple roots of a NES simultaneously within one run.Currently,the majority of research on using EAs to solve NESs focuses on transformation techniques and improving the performance of the used EAs.By contrast,problem domain knowledge of NESs is investigated in this study,where we propose the incorporation of a variable reduction strategy(VRS)into EAs to solve NESs.The VRS makes full use of the systems of expressing a NES and uses some variables(i.e.,core variable)to represent other variables(i.e.,reduced variables)through variable relationships that exist in the equation systems.It enables the reduction of partial variables and equations and shrinks the decision space,thereby reducing the complexity of the problem and improving the search efficiency of the EAs.To test the effectiveness of VRS in dealing with NESs,this paper mainly integrates the VRS into two existing state-of-the-art EA methods(i.e.,MONES and DR-JADE)according to the integration framework of the VRS and EA,respectively.Experimental results show that,with the assistance of the VRS,the EA methods can produce better results than the original methods and other compared methods.Furthermore,extensive experiments regarding the influence of different reduction schemes and EAs substantiate that a better EA for solving a NES with more reduced variables tends to provide better performance.展开更多
The contradiction of variable step size least mean square(LMS)algorithm between fast convergence speed and small steady-state error has always existed.So,a new algorithm based on the combination of logarithmic and sym...The contradiction of variable step size least mean square(LMS)algorithm between fast convergence speed and small steady-state error has always existed.So,a new algorithm based on the combination of logarithmic and symbolic function and step size factor is proposed.It establishes a new updating method of step factor that is related to step factor and error signal.This work makes an analysis from 3 aspects:theoretical analysis,theoretical verification and specific experiments.The experimental results show that the proposed algorithm is superior to other variable step size algorithms in convergence speed and steady-state error.展开更多
Measurement-based one-way quantum computation, which uses cluster states as resources, provides an efficient model to perforrn computation. However, few of the continuous variable (CV) quantum algorithms and classic...Measurement-based one-way quantum computation, which uses cluster states as resources, provides an efficient model to perforrn computation. However, few of the continuous variable (CV) quantum algorithms and classical algorithms based on one-way quantum computation were proposed. In this work, we propose a method to implement the classical Hadamard transform algorithm utilizing the CV cluster state. Compared with classical computation, only half operations are required when it is operated in the one-way CV quantum computer. As an example, we present a concrete scheme of four-mode classical Hadamard transform algorithm with a four-partite CV cluster state. This method connects the quantum computer and the classical algorithms, which shows the feasibility of running classical algorithms in a quantum computer efficiently.展开更多
A novel control method has been proposed by using the genetic algorithm (GA) for nonlinear and complex plants. The proposed control strategy is based on a variable structure control, it overcomes the defects of othe...A novel control method has been proposed by using the genetic algorithm (GA) for nonlinear and complex plants. The proposed control strategy is based on a variable structure control, it overcomes the defects of other adaptive methods such as strong dependence to the system. A GA is used to learn to optimally select integral coefficient C. Simulation results verified the effectiveness of the controller. For position control of Direct Current (DC) motor in practice, this method has good performance and strong robustness, and both dynamic and steady performances were improved.展开更多
Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r....Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r. The imitative full-stress design method (IFS) was presented for discrete struct ural optimum design subjected to multi-constraints. To reach the imitative full -stress state for dangerous members was the target of IFS through iteration. IF S is integrated in the GA. The basic idea of HGA is to divide the optimization t ask into two complementary parts. The coarse, global optimization is done by the GA while local refinement is done by IFS. For instance, every K generations, th e population is doped with a locally optimal individual obtained from IFS. Both methods run in parallel. All or some of individuals are continuously used as initial values for IFS. The locally optimized individuals are re-implanted into the current generation in the GA. From some numeral examples, hybridizatio n has been discovered as enormous potential for improvement of genetic algorit hm. Selection is the component which guides the HGA to the solution by preferring in dividuals with high fitness over low-fitted ones. Selection can be deterministi c operation, but in most implementations it has random components. "Elite surviv al" is introduced to avoid that the observed best-fitted individual dies out, j ust by selecting it for the next generation without any random experiments. The individuals of population are competitive only in the same generation. There exists no competition among different generations. So HGA may be permitted to h ave different evaluation criteria for different generations. Multi-Selectio n schemes are adopted to avoid slow refinement since the individuals have si milar fitness values in the end phase of HGA. The feasibility of this method is tested with examples of engineering design wit h discrete variables. Results demonstrate the validity of HGA.展开更多
In this study,different methods of variable selection using the multilinear step-wise regression(MLR) and support vector regression(SVR) have been compared when the performance of genetic algorithms(GAs) using v...In this study,different methods of variable selection using the multilinear step-wise regression(MLR) and support vector regression(SVR) have been compared when the performance of genetic algorithms(GAs) using various types of chromosomes is used.The first method is a GA with binary chromosome(GA-BC) and the other is a GA with a fixed-length character chromosome(GA-FCC).The overall prediction accuracy for the training set by means of 7-fold cross-validation was tested.All the regression models were evaluated by the test set.The poor prediction for the test set illustrates that the forward stepwise regression(FSR) model is easier to overfit for the training set.The results using SVR methods showed that the over-fitting could be overcome.Further,the over-fitting would be easier for the GA-BC-SVR method because too many variables fleetly induced into the model.The final optimal model was obtained with good predictive ability(R2 = 0.885,S = 0.469,Rcv2 = 0.700,Scv = 0.757,Rex2 = 0.692,Sex = 0.675) using GA-FCC-SVR method.Our investigation indicates the variable selection method using GA-FCC is the most appropriate for MLR and SVR methods.展开更多
In this paper, a variable metric algorithm is proposed with Broyden rank one modifications for the equality constrained optimization. This method is viewed expansion in constrained optimization as the quasi-Newton met...In this paper, a variable metric algorithm is proposed with Broyden rank one modifications for the equality constrained optimization. This method is viewed expansion in constrained optimization as the quasi-Newton method to unconstrained optimization. The theoretical analysis shows that local convergence can be induced under some suitable conditions. In the end, it is established an equivalent condition of superlinear convergence.展开更多
This paper puts forward a new variable step size LMS adaptive algorithm based on variable region. The step size p(k) in the algorithm varies with the variation of the region of deviation e (k) to ensure the optimi...This paper puts forward a new variable step size LMS adaptive algorithm based on variable region. The step size p(k) in the algorithm varies with the variation of the region of deviation e (k) to ensure the optimization of the three performance objectives including initial convergent speed, trace ability of the time-varying system and steady disregulation. The paper demonstrates the convergence of the algorithm accompanied by random noise,展开更多
By modeling direct transient heat conduction problems via finite element method (FEM) and precise integral algorithm, a new approach is presented to solve transient inverse heat conduction problems with multi-variable...By modeling direct transient heat conduction problems via finite element method (FEM) and precise integral algorithm, a new approach is presented to solve transient inverse heat conduction problems with multi-variables. Firstly, the spatial space and temporal domain are discretized by FEM and precise integral algorithm respectively. Then, the high accuracy semi-analytical solution of direct problem can be got. Finally, based on the solution, the computing model of inverse problem and expression of sensitivity analysis are established. Single variable and variables combined identifications including thermal parameters, boundary conditions and source-related terms etc. are given to validate the approach proposed in 1-D and 2-D cases. The effects of noise data and initial guess on the results are investigated. The numerical examples show the effectiveness of this approach.展开更多
基金the Liaoning Province Nature Fundation Project(2022-MS-291)the National Programme for Foreign Expert Projects(G2022006008L)+2 种基金the Basic Research Projects of Liaoning Provincial Department of Education(LJKMZ20220781,LJKMZ20220783,LJKQZ20222457)King Saud University funded this study through theResearcher Support Program Number(RSPD2023R704)King Saud University,Riyadh,Saudi Arabia.
文摘The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.
基金supported in part by the Central Government Guides Local Science and TechnologyDevelopment Funds(Grant No.YDZJSX2021A038)in part by theNational Natural Science Foundation of China under(Grant No.61806138)in part by the China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)(Grant 2021FNA04014).
文摘The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.
文摘Instead of establishing mathematical hydraulic system models from physical laws usually done with the problems of complex modelling processes, low reliability and practicality caused by large uncertainties, a novel modelling method for a highly nonlinear system of a hydraulic excavator is presented. Based on the data collected in the excavator's arms driving experiments, a data-based excavator dynamic model using Simplified Refined Instrumental Variable (SRIV) identification and estimation algorithms is established. The validity of the proposed data-based model is indirectly demonstrated by the performance of computer simulation and the.real machine motion control exoeriments.
文摘A novel genetic algorithm (NGA) is proposed, which possesses micro-regulation and renascence operation. The optimized variable searching interval is regulated gradually according to the sub-group of excellent individuals. The NGA is used to optimize the parameters of the variable structure control (VSC), which satisfies the new reaching law and sliding mode. It is used in robot control systems. Simulation results are given.
文摘Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data.
基金supported by the National Natural Science Foundation of China(12126318,12126302).
文摘This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.
文摘Coastal wetlands are characterized by complex patterns both in their geomorphlc and ecological teatures. Besides field observations, it is necessary to analyze the land cover of wetlands through the color infrared (CIR) aerial photography or remote sensing image. In this paper, we designed an evolving neural network classifier using variable string genetic algorithm (VGA) for the land cover classification of CIR aerial image. With the VGA, the classifier that we designed is able to evolve automatically the appropriate number of hidden nodes for modeling the neural network topology optimally and to find a near-optimal set of connection weights globally. Then, with backpropagation algorithm (BP), it can find the best connection weights. The VGA-BP classifier, which is derived from hybrid algorithms mentioned above, is demonstrated on CIR images classification effectively. Compared with standard classifiers, such as Bayes maximum-likelihood classifier, VGA classifier and BP-MLP (multi-layer perception) classifier, it has shown that the VGA-BP classifier can have better performance on highly resolution land cover classification.
文摘In conventional computed tomography (CT) reconstruction based on fixed voltage, the projective data often ap- pear overexposed or underexposed, as a result, the reconstructive results are poor. To solve this problem, variable voltage CT reconstruction has been proposed. The effective projective sequences of a structural component are obtained through the variable voltage. The total variation is adjusted and minimized to optimize the reconstructive results on the basis of iterative image using algebraic reconstruction technique (ART). In the process of reconstruction, the reconstructive image of low voltage is used as an initial value of the effective proiective reconstruction of the adjacent high voltage, and so on until to the highest voltage according to the gray weighted algorithm. Thereby the complete structural information is reconstructed. Simulation results show that the proposed algorithm can completely reflect the information of a complicated structural com- ponent, and the pixel values are more stable than those of the conventional.
基金supported by the National Key R&D Plan(2020YFB1712902)the National Natural Science Foundation of China(52075036).
文摘In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches.
基金supported by the National Natural Science Foundation of China(51467013)
文摘Satisfactory results cannot be obtained when three-dimensional (3D) targets with complex maneuvering characteristics are tracked by the commonly used two-dimensional coordinated turn (2DCT) model. To address the problem of 3D target tracking with strong maneuverability, on the basis of the modified three-dimensional variable turn (3DVT) model, an adaptive tracking algorithm is proposed by combining with the cubature Kalman filter (CKF) in this paper. Through ideology of real-time identification, the parameters of the model are changed to adjust the state transition matrix and the state noise covariance matrix. Therefore, states of the target are matched in real-time to achieve the purpose of adaptive tracking. Finally, four simulations are analyzed in different settings by the Monte Carlo method. All results show that the proposed algorithm can update parameters of the model and identify motion characteristics in real-time when targets tracking also has a better tracking accuracy.
基金This work was supported by the National Natural Science Foundation of China(62073341)in part by the Natural Science Fund for Distinguished Young Scholars of Hunan Province(2019JJ20026).
文摘Nonlinear equations systems(NESs)are widely used in real-world problems and they are difficult to solve due to their nonlinearity and multiple roots.Evolutionary algorithms(EAs)are one of the methods for solving NESs,given their global search capabilities and ability to locate multiple roots of a NES simultaneously within one run.Currently,the majority of research on using EAs to solve NESs focuses on transformation techniques and improving the performance of the used EAs.By contrast,problem domain knowledge of NESs is investigated in this study,where we propose the incorporation of a variable reduction strategy(VRS)into EAs to solve NESs.The VRS makes full use of the systems of expressing a NES and uses some variables(i.e.,core variable)to represent other variables(i.e.,reduced variables)through variable relationships that exist in the equation systems.It enables the reduction of partial variables and equations and shrinks the decision space,thereby reducing the complexity of the problem and improving the search efficiency of the EAs.To test the effectiveness of VRS in dealing with NESs,this paper mainly integrates the VRS into two existing state-of-the-art EA methods(i.e.,MONES and DR-JADE)according to the integration framework of the VRS and EA,respectively.Experimental results show that,with the assistance of the VRS,the EA methods can produce better results than the original methods and other compared methods.Furthermore,extensive experiments regarding the influence of different reduction schemes and EAs substantiate that a better EA for solving a NES with more reduced variables tends to provide better performance.
基金the National Natural Science Foundation of China(No.51575328,61503232).
文摘The contradiction of variable step size least mean square(LMS)algorithm between fast convergence speed and small steady-state error has always existed.So,a new algorithm based on the combination of logarithmic and symbolic function and step size factor is proposed.It establishes a new updating method of step factor that is related to step factor and error signal.This work makes an analysis from 3 aspects:theoretical analysis,theoretical verification and specific experiments.The experimental results show that the proposed algorithm is superior to other variable step size algorithms in convergence speed and steady-state error.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11504024,61502041,61602045 and 61602046the National Key Research and Development Program of China under Grant No 2016YFA0302600
文摘Measurement-based one-way quantum computation, which uses cluster states as resources, provides an efficient model to perforrn computation. However, few of the continuous variable (CV) quantum algorithms and classical algorithms based on one-way quantum computation were proposed. In this work, we propose a method to implement the classical Hadamard transform algorithm utilizing the CV cluster state. Compared with classical computation, only half operations are required when it is operated in the one-way CV quantum computer. As an example, we present a concrete scheme of four-mode classical Hadamard transform algorithm with a four-partite CV cluster state. This method connects the quantum computer and the classical algorithms, which shows the feasibility of running classical algorithms in a quantum computer efficiently.
基金This paper is supported by Young Teacher Foundation of Xi'an University of Technology.
文摘A novel control method has been proposed by using the genetic algorithm (GA) for nonlinear and complex plants. The proposed control strategy is based on a variable structure control, it overcomes the defects of other adaptive methods such as strong dependence to the system. A GA is used to learn to optimally select integral coefficient C. Simulation results verified the effectiveness of the controller. For position control of Direct Current (DC) motor in practice, this method has good performance and strong robustness, and both dynamic and steady performances were improved.
文摘Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r. The imitative full-stress design method (IFS) was presented for discrete struct ural optimum design subjected to multi-constraints. To reach the imitative full -stress state for dangerous members was the target of IFS through iteration. IF S is integrated in the GA. The basic idea of HGA is to divide the optimization t ask into two complementary parts. The coarse, global optimization is done by the GA while local refinement is done by IFS. For instance, every K generations, th e population is doped with a locally optimal individual obtained from IFS. Both methods run in parallel. All or some of individuals are continuously used as initial values for IFS. The locally optimized individuals are re-implanted into the current generation in the GA. From some numeral examples, hybridizatio n has been discovered as enormous potential for improvement of genetic algorit hm. Selection is the component which guides the HGA to the solution by preferring in dividuals with high fitness over low-fitted ones. Selection can be deterministi c operation, but in most implementations it has random components. "Elite surviv al" is introduced to avoid that the observed best-fitted individual dies out, j ust by selecting it for the next generation without any random experiments. The individuals of population are competitive only in the same generation. There exists no competition among different generations. So HGA may be permitted to h ave different evaluation criteria for different generations. Multi-Selectio n schemes are adopted to avoid slow refinement since the individuals have si milar fitness values in the end phase of HGA. The feasibility of this method is tested with examples of engineering design wit h discrete variables. Results demonstrate the validity of HGA.
基金supported by Youth Foundation of the Education Department of Sichuan Province (No.09ZB038)
文摘In this study,different methods of variable selection using the multilinear step-wise regression(MLR) and support vector regression(SVR) have been compared when the performance of genetic algorithms(GAs) using various types of chromosomes is used.The first method is a GA with binary chromosome(GA-BC) and the other is a GA with a fixed-length character chromosome(GA-FCC).The overall prediction accuracy for the training set by means of 7-fold cross-validation was tested.All the regression models were evaluated by the test set.The poor prediction for the test set illustrates that the forward stepwise regression(FSR) model is easier to overfit for the training set.The results using SVR methods showed that the over-fitting could be overcome.Further,the over-fitting would be easier for the GA-BC-SVR method because too many variables fleetly induced into the model.The final optimal model was obtained with good predictive ability(R2 = 0.885,S = 0.469,Rcv2 = 0.700,Scv = 0.757,Rex2 = 0.692,Sex = 0.675) using GA-FCC-SVR method.Our investigation indicates the variable selection method using GA-FCC is the most appropriate for MLR and SVR methods.
文摘In this paper, a variable metric algorithm is proposed with Broyden rank one modifications for the equality constrained optimization. This method is viewed expansion in constrained optimization as the quasi-Newton method to unconstrained optimization. The theoretical analysis shows that local convergence can be induced under some suitable conditions. In the end, it is established an equivalent condition of superlinear convergence.
基金Supported by Natural Science Foundation of Beijing of China (No.2005AA501140)
文摘This paper puts forward a new variable step size LMS adaptive algorithm based on variable region. The step size p(k) in the algorithm varies with the variation of the region of deviation e (k) to ensure the optimization of the three performance objectives including initial convergent speed, trace ability of the time-varying system and steady disregulation. The paper demonstrates the convergence of the algorithm accompanied by random noise,
文摘By modeling direct transient heat conduction problems via finite element method (FEM) and precise integral algorithm, a new approach is presented to solve transient inverse heat conduction problems with multi-variables. Firstly, the spatial space and temporal domain are discretized by FEM and precise integral algorithm respectively. Then, the high accuracy semi-analytical solution of direct problem can be got. Finally, based on the solution, the computing model of inverse problem and expression of sensitivity analysis are established. Single variable and variables combined identifications including thermal parameters, boundary conditions and source-related terms etc. are given to validate the approach proposed in 1-D and 2-D cases. The effects of noise data and initial guess on the results are investigated. The numerical examples show the effectiveness of this approach.