期刊文献+
共找到135篇文章
< 1 2 7 >
每页显示 20 50 100
Evaluating the Efficacy of Latent Variables in Mitigating Data Poisoning Attacks in the Context of Bayesian Networks:An Empirical Study
1
作者 Shahad Alzahrani Hatim Alsuwat Emad Alsuwat 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1635-1654,共20页
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ... Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data. 展开更多
关键词 bayesian networks data poisoning attacks latent variables structure learning algorithms adversarial attacks
下载PDF
A Dynamic-Bayesian-Networks-Based Resilience Assessment Approach of Structure Systems: Subsea Oil and Gas Pipelines as A Case Study 被引量:3
2
作者 CAI Bao-ping ZHANG Yan-ping +5 位作者 YUAN Xiao-bing GAO Chun-tan LIU Yong-hong CHEN Guo-ming LIU Zeng-kai JI Ren-jie 《China Ocean Engineering》 SCIE EI CSCD 2020年第5期597-607,共11页
Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metric... Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metrics and assessment approaches are proposed for engineering system, they are not suitable for complex structure systems, since the failure mechanisms of them are different under the influences of natural disasters. This paper proposes a novel resilience assessment metric for structure system from a macroscopic perspective, named structure resilience, and develops a corresponding assessment approach based on remaining useful life of key components. Dynamic Bayesian networks(DBNs) and Markov are applied to establish the resilience assessment model. In the degradation process, natural degradation and accelerated degradation are modelled by using Bayesian networks, and then coupled by using DBNs. In the recovery process, the model is established by combining Markov and DBNs. Subsea oil and gas pipelines are adopted to demonstrate the application of the proposed structure metric and assessment approach. 展开更多
关键词 structure resilience structure system remaining useful life dynamic bayesian networks
下载PDF
Target threat estimation based on discrete dynamic Bayesian networks with small samples 被引量:2
3
作者 YE Fang MAO Ying +1 位作者 LI Yibing LIU Xinrui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1135-1142,共8页
The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target thr... The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target threat level.Unfortunately,the traditional discrete dynamic Bayesian network(DDBN)has the problems of poor parameter learning and poor reasoning accuracy in a small sample environment with partial prior information missing.Considering the finiteness and discreteness of DDBN parameters,a fuzzy k-nearest neighbor(KNN)algorithm based on correlation of feature quantities(CF-FKNN)is proposed for DDBN parameter learning.Firstly,the correlation between feature quantities is calculated,and then the KNN algorithm with fuzzy weight is introduced to fill the missing data.On this basis,a reasonable DDBN structure is constructed by using expert experience to complete DDBN parameter learning and reasoning.Simulation results show that the CF-FKNN algorithm can accurately fill in the data when the samples are seriously missing,and improve the effect of DDBN parameter learning in the case of serious sample missing.With the proposed method,the final target threat assessment results are reasonable,which meets the needs of engineering applications. 展开更多
关键词 discrete dynamic bayesian network(DDBN) parameter learning missing data filling bayesian estimation
下载PDF
APPROACH FOR LAYOUT OPTIMIZATION OF TRUSS STRUCTURES WITH DISCRETE VARIABLES UNDER DYNAMIC STRESS, DISPLACEMENT AND STABILITY CONSTRAINTS 被引量:1
4
作者 石连栓 王跃方 孙焕纯 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第5期593-599,共7页
A mathematical model was developed for layout optimization of truss structures with discrete variables subjected to dynamic stress, dynamic displacement and dynamic stability constraints. By using the quasi-static met... A mathematical model was developed for layout optimization of truss structures with discrete variables subjected to dynamic stress, dynamic displacement and dynamic stability constraints. By using the quasi-static method, the mathematical model of structure optimization under dynamic stress, dynamic displacement and dynamic stability constraints were transformed into one subjected to static stress, displacement and stability constraints. The optimization procedures include two levels, i.e., the topology optimization and the shape optimization. In each level, the comprehensive algorithm was used and the relative difference quotients of two kinds of variables were used to search the optimum solution. A comparison between the optimum results of model with stability constraints and the optimum results of model without stability constraint was given. And that shows the stability constraints have a great effect on the optimum solutions. 展开更多
关键词 discrete variables structure optimization layout optimum design dynamic stress constraint dynamic displacement constraint dynamic stability constraint relative difference quotient
下载PDF
A METHOD FOR TOPOLOGICAL OPTIMIZATION OF STRUCTURES WITH DISCRETE VARIABLES UNDER DYNAMIC STRESS AND DISPLACEMENT CONSTRAINTS
5
作者 石连栓 孙焕纯 冯恩民 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第7期781-787,共7页
A method for topological optimization of structures with discrete variables subjected to dynamic stress and displacement constraints is presented. By using the quasistatic method, the structure optimization problem un... A method for topological optimization of structures with discrete variables subjected to dynamic stress and displacement constraints is presented. By using the quasistatic method, the structure optimization problem under dynamic stress and displacement constraints is converted into one subjected to static stress and displacement constraints. The comprehensive algorithm for topological optimization of structures with discrete variables is used to find the optimum solution. 展开更多
关键词 discrete variables structure optimization topological optimization dynamic stress constraint dynamic displacement constraint
下载PDF
Binary ABR flow control over ATM networks with uncertainty using discrete-time variable structure controller
6
作者 Ming YAN Yuanwei JING 《控制理论与应用(英文版)》 EI 2008年第1期16-21,共6页
A binary available bit rate (ABR) scheme based on discrete-time variable structure control (DVSC) theory is proposed to solve the problem of asynchronous transfer mode (ATM) networks congestion in this paper. A ... A binary available bit rate (ABR) scheme based on discrete-time variable structure control (DVSC) theory is proposed to solve the problem of asynchronous transfer mode (ATM) networks congestion in this paper. A discrete-time system model with uncertainty is introduced to depict the time-varying ATM networks. Based on the system model, an asymptotically stable sliding surface is designed by linear matrix inequality (LMI). In addition, a novel discrete-time reaching law that can obviously reduce chatter is also put forward. The proposed discrete-time variable structure controller can effectively constrain the oscillation of allowed cell rate (ACR) and the queue length in a router. Moreover, the controller is self-adaptive against the uncertainty in the system. Simulations are done in different scenarios. The results demonstrate that the controller has better stability and robustness than the traditional binary flow controller, so it is good for adequately exerting the simplicity of binary flow control mechanisms. 展开更多
关键词 Binary ABR flow control ATM networks discrete-time variable structure control UNCERTAINTY Linear matrix inequality discrete-time reaching law
下载PDF
Research on the self-defence electronic jamming decision-making based on the discrete dynamic Bayesian network 被引量:6
7
作者 Tang Zheng Gao Xiaoguang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第4期702-708,共7页
The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with se... The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with self-defense electronic jamming, a decision-making model with self-defense electronic jamming based on the discrete dynamic Bayesian network is established. Then jamming decision inferences by the aid of the algorithm of discrete dynamic Bayesian network are carried on. The simulating result shows that this method is able to synthesize different targets which are not predominant. In this way, various features at the same time, as well as the same feature appearing at different time complement mutually; in addition, the accuracy and reliability of electronic jamming decision making are enhanced significantly. 展开更多
关键词 self-defense electronic jamming discrete dynamic bayesian network decision-making model
下载PDF
Compensation for secondary uncertainty in electro-hydraulic servo system by gain adaptive sliding mode variable structure control 被引量:11
8
作者 张友旺 桂卫华 《Journal of Central South University of Technology》 EI 2008年第2期256-263,共8页
Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employe... Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively. 展开更多
关键词 electro-hydraulic servo system adaptive dynamic recurrent fuzzy neural network(ADRFNN) gain adaptive slidingmode variable structure control(GASMVSC) secondary uncertainty
下载PDF
Linking Structural Equation Modeling with Bayesian Network and Its Application to Coastal Phytoplankton Dynamics in the Bohai Bay
9
作者 XU Xiao-fu SUN Jian +2 位作者 NIE Hong-tao YUAN De-kui TAO Jian-hua 《China Ocean Engineering》 SCIE EI CSCD 2016年第5期733-748,共16页
Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate e... Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate existing knowledge. To overcome this limitation, we propose a new method that links BN with structural equation modeling (SEM). In this method, SEM is used to improve the model structure for BN. This method was used to simulate coastal phytoplankton dynamics in the Bohai Bay. We demonstrate that this hybrid approach minimizes the need for expert elicitation, generates more reasonable structures for BN models, and increases the BN model's accuracy and reliability. These results suggest that the inclusion of SEM for testing and verifying the theoretical structure during the initial construction stage improves the effectiveness of BN models, especially for complex eco-environment systems. The results also demonstrate that in the Bohai Bay, while phytoplankton biomass has the greatest influence on phytoplankton dynamics, the impact of nutrients on phytoplankton dynamics is larger than the influence of the physical environment in summer. Furthermore, although the Redfield ratio indicates that phosphorus should be the primary nutrient limiting factor, our results show that silicate plays the most important role in regulating phytoplankton dynamics in the Bohai Bay. 展开更多
关键词 structural equation modeling bayesian networks ecological modeling Bohai Bay phytoplankton dynamics
下载PDF
基于离散度聚合算法的海洋核动力平台拖航作业风险分析
10
作者 郭冲冲 武文华 +2 位作者 吕柏呈 曹光明 罗起航 《海洋工程》 CSCD 北大核心 2024年第4期57-68,共12页
为了解决海洋核动力平台(MNPP)在拖航作业中面临的风险问题,提出了一种基于离散度聚合算法(DAM)的拖航作业风险分析方法。该方法采用故障树表示风险系统的层次关系,并映射为动态贝叶斯网络(DBN)结构;采用模糊集理论和专家评价克服缺乏... 为了解决海洋核动力平台(MNPP)在拖航作业中面临的风险问题,提出了一种基于离散度聚合算法(DAM)的拖航作业风险分析方法。该方法采用故障树表示风险系统的层次关系,并映射为动态贝叶斯网络(DBN)结构;采用模糊集理论和专家评价克服缺乏客观统计数据的局限,基于离散度聚合方法确定模糊动态贝叶斯网络参数。针对建立的模糊动态贝叶斯网络模型,进行影响强度分析、因果推理分析、诊断推理分析和敏感性分析,得到拖航作业过程中最可能出现的风险路径、事故动态演化过程以及关键风险因素等。同时,给出了针对性风险控制措施,为现场作业和管理人员提供参考。 展开更多
关键词 海洋核动力平台 离散度聚合算法 动态贝叶斯网络 拖航作业 风险分析
下载PDF
基于T-S动态故障树的桁架机器人系统可靠性分析
11
作者 武滢 杨帅军 韦康 《组合机床与自动化加工技术》 北大核心 2024年第8期38-42,共5页
为了提高桁架机器人系统的动态可靠性,并且在发生故障时提升排查故障的效率,提出一种对桁架机器人系统动态可靠性分析的方法。首先,对桁架机器人系统建立T-S动态故障树;然后,把T-S动态故障树和T-S动态门规则分别转化为离散时间贝叶斯网... 为了提高桁架机器人系统的动态可靠性,并且在发生故障时提升排查故障的效率,提出一种对桁架机器人系统动态可靠性分析的方法。首先,对桁架机器人系统建立T-S动态故障树;然后,把T-S动态故障树和T-S动态门规则分别转化为离散时间贝叶斯网络(DTBN)与相应网络节点的条件概率表,根据DTBN正反向推理分别计算得到各时间段以及任务时间内系统失效概率和根节点后验概率,并获得各根节点的T-S概率重要度、T-S关键重要度和灵敏度;最后,应用Monte Carlo仿真法进行验证,结果显示相对误差为0.29%,证明所提方法可行。给出当系统发生故障时应优先排查的零部件,并确定了系统薄弱环节,得出应优先提高可靠度的零部件,为桁架机器人系统的动态可靠性分析提供了理论依据。 展开更多
关键词 桁架机器人系统 T-S动态故障树 离散时间贝叶斯网络 后验概率
下载PDF
离散变量影响下激光通信网络拓扑结构优化研究
12
作者 郭玲伟 洪小飞 彭冲冲 《激光杂志》 CAS 北大核心 2024年第7期199-204,共6页
激光通信网络在进行信息传输时容易受到离散变量的影响,降低信息传输质量。为此,研究离散变量影响下激光通信网络拓扑结构优化方法。生成激光通信网络初始拓扑结构,分析离散变量带来的影响。根据激光通信网络拓扑结构优化目标,建立激光... 激光通信网络在进行信息传输时容易受到离散变量的影响,降低信息传输质量。为此,研究离散变量影响下激光通信网络拓扑结构优化方法。生成激光通信网络初始拓扑结构,分析离散变量带来的影响。根据激光通信网络拓扑结构优化目标,建立激光通信网络的拓扑结构优化目标模型。采用多目标进化方法,剔除拓扑结构中的冗余链路,实现对激光通信网络拓扑结构的优化。实验结果表明,所提方法优化后的网络拓扑结构链路平均长度在50 cm以下,通信节点能量在48 J以上,网络生存轮数高于371轮,优化性能好,有效剔除了网络拓结构中的冗余路径。 展开更多
关键词 离散变量 激光通信网络 拓扑结构优化 优化目标函数 多目标进化方法
下载PDF
基于离散时间贝叶斯网络的CBTC车载设备可靠性分析
13
作者 刘懂懂 王友平 +1 位作者 吴鸣晢 刘大伟 《铁道通信信号》 2024年第9期81-87,共7页
基于通信的列车控制系统(CBTC)车载设备用于实现列车安全防护和自动运行,其可靠性直接关系到列车的运行安全和效率。针对设备运营过程中的动态失效问题,基于离散时间贝叶斯网络(DTBN)对CBTC车载设备可靠性进行分析。首先,在分析CBTC车... 基于通信的列车控制系统(CBTC)车载设备用于实现列车安全防护和自动运行,其可靠性直接关系到列车的运行安全和效率。针对设备运营过程中的动态失效问题,基于离散时间贝叶斯网络(DTBN)对CBTC车载设备可靠性进行分析。首先,在分析CBTC车载设备功能结构的基础上构建系统动态故障树模型,基于动态故障树模型与DTBN模型的转换规则以及DTBN逻辑门条件概率表,建立基于DTBN的可靠性分析模型;其次,通过DTBN的正向推理实现CBTC车载设备的可靠度评估;最后,通过DTBN的反向推理及重要度计算,实现CBTC车载设备薄弱环节分析及重要度排序。结果表明:ATP子系统中输出继电器板、输出板等是CBTC车载设备最薄弱的板卡级设备,需重点关注。该方法能为CBTC车载设备的可靠性分析提供依据,有效提升系统智能运维水平。 展开更多
关键词 基于通信的列车控制系统 离散时间贝叶斯网络 车载设备 动态故障树 可靠性 重要度排序 智能运维
下载PDF
基于弹性变结构DDBN网络的空战目标识别 被引量:10
14
作者 郑景嵩 高晓光 陈冲 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第9期2303-2306,共4页
采用离散动态贝叶斯网络的直接推理方法作为基础,提出弹性变结构离散动态贝叶斯网络的概念,构建了空战目标识别的弹性变结构离散动态贝叶斯网络模型,给出了相应的推理算法,以此克服了离散静态贝叶斯网络和定结构离散动态贝叶斯网络在目... 采用离散动态贝叶斯网络的直接推理方法作为基础,提出弹性变结构离散动态贝叶斯网络的概念,构建了空战目标识别的弹性变结构离散动态贝叶斯网络模型,给出了相应的推理算法,以此克服了离散静态贝叶斯网络和定结构离散动态贝叶斯网络在目标分类识别过程中出现的问题。通过仿真结果对比,表明该方法可以综合各个时刻各种被观测到的确定和不确定信息,从而更为有效的实现目标的分类和识别。 展开更多
关键词 目标识别 空战 变结构离散动态贝叶斯网络 弹性变结构离散动态贝叶斯网络
下载PDF
基于离散时间贝叶斯网络的动态故障树分析方法 被引量:24
15
作者 周忠宝 周经伦 +2 位作者 孙权 金光 董豆豆 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第6期732-736,共5页
提出了一种基于离散时间贝叶斯网络的动态故障树分析方法.首先给出优先与门、顺序相关门、备件门、功能相关门等动态逻辑门向离散时间贝叶斯网络的转化方法,在得到动态故障树对应的离散时间贝叶斯网络之后,再利用贝叶斯网络推理算法计... 提出了一种基于离散时间贝叶斯网络的动态故障树分析方法.首先给出优先与门、顺序相关门、备件门、功能相关门等动态逻辑门向离散时间贝叶斯网络的转化方法,在得到动态故障树对应的离散时间贝叶斯网络之后,再利用贝叶斯网络推理算法计算、诊断和预计顶事件概率、重要度等常规分析结果.对数字飞控计算机系统进行的分析表明,该方法能够保证较高的求解精度,其相对误差均保持在0.4%以内,而且易于扩展到多态和非确定性逻辑关系的情形. 展开更多
关键词 动态故障树 离散时间贝叶斯网络 数字飞控计算机系统 可靠性分析
下载PDF
复杂环境下的无人机任务决策模型 被引量:17
16
作者 任佳 高晓光 +1 位作者 郑景嵩 张艳 《系统工程与电子技术》 EI CSCD 北大核心 2010年第1期100-103,共4页
为实现不确定环境下无人机(unmanned aerial vehicle,UAV)自主动态任务决策,提出一种基于变结构离散动态贝叶斯网络(structure-varied discrete dynamic Bayesian network,SVDDBN)的任务决策模型。该模型由威胁等级评估、目标价值评估... 为实现不确定环境下无人机(unmanned aerial vehicle,UAV)自主动态任务决策,提出一种基于变结构离散动态贝叶斯网络(structure-varied discrete dynamic Bayesian network,SVDDBN)的任务决策模型。该模型由威胁等级评估、目标价值评估和态势优势评估三部分组成,在此基础上可完成突变过程建模。根据以上三部分的评估结果,运用变结构离散动态贝叶斯网络推理算法得到当前时刻的任务决策。仿真结果表明,给出的决策模型满足突发威胁下的任务决策需求。 展开更多
关键词 无人机 任务决策 变结构离散动态贝叶斯网络
下载PDF
变结构离散动态贝叶斯网络及其推理算法 被引量:22
17
作者 高晓光 史建国 《系统工程学报》 CSCD 北大核心 2007年第1期9-14,共6页
目前的动态贝叶斯网络的研究,是定义在每一个时间片的静态贝叶斯网络结构和参数都一致的基础上,对于过程突变,参数变化等情况就难以适应.为了解决这个问题,提出变结构离散动态贝叶斯网络的概念,并根据概率和动态贝叶斯网络的理论,推导... 目前的动态贝叶斯网络的研究,是定义在每一个时间片的静态贝叶斯网络结构和参数都一致的基础上,对于过程突变,参数变化等情况就难以适应.为了解决这个问题,提出变结构离散动态贝叶斯网络的概念,并根据概率和动态贝叶斯网络的理论,推导出变结构离散动态贝叶斯网络的推理方法,对算法进行了验证并结合环境变化时的路径选择问题,进行了计算仿真.计算和仿真结果证明了文章提出的变结构离散动态贝叶斯网络的概念和推理算法的正确性. 展开更多
关键词 离散动态贝叶斯网络 推理 算法 变结构
下载PDF
态势评估的变结构区间概率动态贝叶斯网络方法 被引量:8
18
作者 胡云安 刘振 史建国 《系统工程与电子技术》 EI CSCD 北大核心 2013年第9期1891-1897,共7页
针对以往利用贝叶斯网络进行势评估时,贝叶斯网络结构和参数都是固定不变的不足,为提高态势评估准确性,提出一种变结构区间概率动态贝叶斯网络(variable structure interval probability dynamic Bayesian network,VSIP-DBN)进行态势评... 针对以往利用贝叶斯网络进行势评估时,贝叶斯网络结构和参数都是固定不变的不足,为提高态势评估准确性,提出一种变结构区间概率动态贝叶斯网络(variable structure interval probability dynamic Bayesian network,VSIP-DBN)进行态势评估的方法。给出了VSIP-DBN的定义,推导了其推理的算法,网络结构能够根据态势变化情况进行改变,并给出了结构变化的判断依据,将参数推广为区间概率的形式,同时提出了区间概率参数的学习方法。将VSIP-DBN应用于态势评估,在典型作战条件下进行仿真分析,不需要精确给出网络参数,即使出现偶然观测误差,也能够准确地评估出当前空战态势,提高了评估的灵活性。 展开更多
关键词 态势评估 动态贝叶斯网络 区间概率 结构变化
下载PDF
目标数据缺失下离散动态贝叶斯网络的参数学习 被引量:11
19
作者 任佳 高晓光 茹伟 《系统工程与电子技术》 EI CSCD 北大核心 2011年第8期1885-1890,共6页
离散动态贝叶斯网络参数学习的难点在于:隐藏节点的片间转移概率获得及观测数据发生不同程度缺失。针对上述问题,提出基于目标缺失数据估计的前向递归参数学习算法。该算法利用离散动态贝叶斯网络中各观测变量与隐藏变量之间的对应关系... 离散动态贝叶斯网络参数学习的难点在于:隐藏节点的片间转移概率获得及观测数据发生不同程度缺失。针对上述问题,提出基于目标缺失数据估计的前向递归参数学习算法。该算法利用离散动态贝叶斯网络中各观测变量与隐藏变量之间的对应关系,采用支持向量机建立观测变量间的非线性函数关系完成缺失数据估计,此基础上利用完整数据集和前向递归算法完成片内和片间参数更新。以空中目标识别为仿真背景,通过与期望最大算法对比,验证了该算法的学习效率和精度两个方面的优势。 展开更多
关键词 参数学习 离散动态贝叶斯网络 数据缺失 前向递归
下载PDF
贝叶斯网络参数学习中的连续变量离散化方法 被引量:10
20
作者 吴红 王维平 杨峰 《系统工程与电子技术》 EI CSCD 北大核心 2012年第10期2157-2162,共6页
首先从离散方案对推理功能的影响出发,提出将条件信息熵作为评判离散方案好坏的标准;其次从降低问题求解的复杂度出发,提出将贝叶斯网络划分为多个极小简单子网分别进行离散化;最后,依据离散化问题与路径规划问题的相似性,设计了一套利... 首先从离散方案对推理功能的影响出发,提出将条件信息熵作为评判离散方案好坏的标准;其次从降低问题求解的复杂度出发,提出将贝叶斯网络划分为多个极小简单子网分别进行离散化;最后,依据离散化问题与路径规划问题的相似性,设计了一套利用蚁群算法进行问题求解的方法。实验表明,采用所提方法进行贝叶斯网络连续变量离散化,能很好地将连续变量的取值空间进行分类,从而达到良好的推理效果。 展开更多
关键词 条件信息熵 贝叶斯网络 极小简单子网 连续变量 离散化 蚁群算法
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部