Coal bed methane (CBM) has a huge potential to be purified to relieve the shortage of natural gas meanwhile to weaken the greenhouse effect. This paper proposed an optimal design strategy for CBM to obtain an integr...Coal bed methane (CBM) has a huge potential to be purified to relieve the shortage of natural gas meanwhile to weaken the greenhouse effect. This paper proposed an optimal design strategy for CBM to obtain an integrated process configuration consisting of three each single separation units, membrane, pressure swing absorption, and cryogenics. A superstructure model was established including all possible network configurations which were solved by MINLP. The design strategy optimized the separation unit configuration and operating conditions to satisfy the target of minimum total annual process cost. An example was presented for the separation of CH4/N2 mixtures in coal bed methane (CBM) treatment. The key operation parameters were also studied and they showed the influence to process configurations.展开更多
A non-linear non-ideal model, taking into account non-linear competitive isotherms, axial dispersion, film mass transfer, intraparticle diffusion, and port periodic switching, was developed to simulate the dynamics of...A non-linear non-ideal model, taking into account non-linear competitive isotherms, axial dispersion, film mass transfer, intraparticle diffusion, and port periodic switching, was developed to simulate the dynamics of simulated moving bed chromatography (SMBC). The model equations were solved by a new efficient numerical technique of orthogonal collocation on finite elements with periodical movement of concentration vector. The simulated SMBC performance is in accordance with the experimental results reported in the literature for separation of l,1'-bi-2-naphthol enantiomers using SMBC. This model is useful for design, operation, optimization and scale-up of non-linear SMBC for chiral separations with significant non-ideal effects, especially for high solute concentration and small intraparticle diffusion coefficient or large chiral stationary phase particle.展开更多
Failure of the surrounding rock around a roadway induced by roof separation is one major type of underground roof-fall accidents.This failure can especially be commonly-seen in a bottom-driven roadway within an extra-...Failure of the surrounding rock around a roadway induced by roof separation is one major type of underground roof-fall accidents.This failure can especially be commonly-seen in a bottom-driven roadway within an extra-thick coal seam("bottom-driven roadway"is used throughout for ease of reference),containing weak partings in their roof coal seams.To determine the upper limit position of the roof interlayer separation is the primary premise for roof control.In this study,a mechanical model for predicting the interlayer separation overlying a bottom-driven roadway within an extra-thick coal seam was established and used to deduce the vertical stress,and length,of the elastic,and plastic zones in the rock strata above the wall of the roadway as well as the formulae for calculating the deflection in different regions of rock strata under bearing stress.Also,an approach was proposed,calculating the stratum load,deflection,and limiting span of the upper limit position of the interlayer separation in a thick coal seam.Based on the key strata control theory and its influence of bedding separation,a set of methods judging the upper limit position of the roof interlayer separation were constructed.In addition,the theoretical prediction and field monitoring for the upper limit position of interlayer separation were conducted in a typical roadway.The results obtained by these two methods are consistent,indicating that the methods proposed are conducive to improving roof control in a thick coal seam.展开更多
Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at dis...Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at disposing the problem that fine particles of waste printed circuit boards cannot be separated efficiently so as to obtain further insight about the underlying mechanisms and demonstrate the separation feasibility in the tapered column separation bed.In this work,a Computational Fluid Dynamics(CFD) coupled with Discrete Element Method(DEM) model for two-phase flow has been extended to simulate the fluid-solid flow in the tapered column separation bed.Its validity is demonstrated by its successful capturing the key features of particles' flow pattern,velocity,the pressure distribution,the axial position with time and axial force for particles with different densities.Simulation results show that the plastic particles and resin particles become overflow,while copper particles,iron particles and aluminum particles successively become underflow,with a discharge water flow rate of 1 m^3/h,an obliquity of 30°.The simulated results agree reasonably well with the experimental observation.Using this equipment to separate waste PCBs is feasible,theoretically.展开更多
To improve the separation efficiency of a conventional Teetered Bed Separator(TBS) in beneficiation of fine coal with a wide size range,an Aeration TBS(A-TBS) was proposed in this investigation.The bubbles were introd...To improve the separation efficiency of a conventional Teetered Bed Separator(TBS) in beneficiation of fine coal with a wide size range,an Aeration TBS(A-TBS) was proposed in this investigation.The bubbles were introduced to A-TBS by a self-priming micro-bubble generator.This study theoretically analyzed the effect of bubbles on the difference in hindered settling terminal velocity between different density particles,investigated the impact of superficial water velocity(V_(SW)) and superficial gas velocity(V_(Sg)) on bed fluidization,and compared the performance of the TBS and A-TBS in treating 1-0.25 mm size fraction particles.The results show that the expansion degree of fluidized bed which was formed by different size particles or has different initial height,is increased by the introduction of bubbles.Compared with the TBS,at the same level of clean coal ash content,the A-TBS shows an increase in the combustible recovery of clean coal,ash content of tailings,and practical separation density by 5.26%,6.56%,and 0.088 g/cm3 respectively,while it shows a decrease in the probable error(E_p) and V_(SW) by 0.031 and 3.51 mm/s,respectively.The addition of bubbles at a proper amount not only improves the separation performance of TBS,but also reduces the upward water velocity.展开更多
A simulated moving bed (SMB), equipped with eight silica-gel columns, was used to separate phosphatidylcholine (PC) from soybean phospholipids. The effects of flow rate in Sections 2 (Q2) and 3 (Q3), switching time, f...A simulated moving bed (SMB), equipped with eight silica-gel columns, was used to separate phosphatidylcholine (PC) from soybean phospholipids. The effects of flow rate in Sections 2 (Q2) and 3 (Q3), switching time, feed flow rate and feed concentration on the operating performance parameters: purity, recovery, productivity and desorbent consumption were studied. Operating conditions leading to more than 90% purity in both outlet streams have been identified, together with those achieving optimal performance. Regions leading to complete separation are observed and explained theoretically. As the mass-transfer effect was not considered, the triangle theory only gives initial guesses for the optimal operating conditions.展开更多
A new experiment was made on the developing of bed separations and mining subsidence from Tangshan T2192 working face by equivalent materials simulation.The overburden deformation and the developing of bed separations...A new experiment was made on the developing of bed separations and mining subsidence from Tangshan T2192 working face by equivalent materials simulation.The overburden deformation and the developing of bed separations with working face advanc- ing was simulated by a new model.The results show that the maximum value of bed separations moved forward gradually along with the working face advancing;the maxi- mum value of bed separations is 0.31~0.50 times of mining thickness.The key strata have a great influence upon surface subsidence during the overburden movement process.The mechanics parameters of new experiment are fitted with results in fields perfectly.展开更多
To control land surface subsidence caused the underground mineral exploitation and the catastrophic phenomena such as serious damage of buildings, waterbodies, cultivated lands, railways, bridges caused by land subsid...To control land surface subsidence caused the underground mineral exploitation and the catastrophic phenomena such as serious damage of buildings, waterbodies, cultivated lands, railways, bridges caused by land subsidence, bed separation grouting technology of overburden is put forward. To provide theoretical support for the technology, the characteristics and the mechanics mechanism of mining overburden from layer-split to formation of bed separation are studied. On the basis of elastic sheet board theory, calculation formula of rock sheet deflection is presented, and the mechanics criteria of the separation formation and the calculation formula of bed separation volume are set up. Finally, the applications and technics of bed separation grout technology of mining overburden to control land subsidence in china are introduced.展开更多
Gas–solid separation fluidized bed is a typical method for coal separation without water utilization.Geldart A particles is also considered as the ideal dense medium to strengthen separation efficiency.Fluidization s...Gas–solid separation fluidized bed is a typical method for coal separation without water utilization.Geldart A particles is also considered as the ideal dense medium to strengthen separation efficiency.Fluidization stability reflects the bed pressure fluctuations and the distribution of bubble and emulsion phases,affecting the separation performance.And the main frequency of pressure fluctuations can directly reflect the degree of pressure fluctuations.Therefore,the detailed fluidization stability is analyzed combined the method of standard deviation of pressure fluctuations,power spectral density,etc.,for Geldart A particles.The results showed that maintaining an appropriate gas velocity resulted in an average bed pressure of around 2000 Pa.The main frequency is mainly concentrated around 1–1.5 Hz.Finally,a prediction model of the main frequency of pressure fluctuations is established,and the error can be controlled within±0.15.The investigation further proved the stable fluidization of Geldart A particles and provides a method for predicting the main frequency of pressure fluctuations in the gas–solid separation fluidized bed.展开更多
The separation characteristic of raw coal from Luoyang mining area, China, was investigated by applying a dry coal beneficiation flowsheet with the dense medium gas-solid fluidized bed as main separating equipment. Th...The separation characteristic of raw coal from Luoyang mining area, China, was investigated by applying a dry coal beneficiation flowsheet with the dense medium gas-solid fluidized bed as main separating equipment. The experimental and simulation results indicate that the dense medium gas-solid fluidized bed can provide uniform distribution and stable fluctuation of bed densities at various heights. Two types of different separating approaches were compared using the dry coal beneficiation flowsheet. Compared with obtaining cleaning coal in the first stage of the flowsheet, a higher yield of the cleaning coal and better separation efficiency can be achieved when discharging gangue in the first stage. Finally, the results indicate that 64.86% pure cleaning coal with an ash content of 11.77% and 13.53% middlings were obtained, and 21.61% gangue was removed in two successive separation stages with the probable errors of 0.05 and 0.07 g/cm3, respectively.展开更多
Coal bed methane has been considered as an important energy resource.One major difficulty of purifying coal bed methane comes from the similar physical properties of CH_4 and N_2.The ZIF-8/water-glycol slurry was used...Coal bed methane has been considered as an important energy resource.One major difficulty of purifying coal bed methane comes from the similar physical properties of CH_4 and N_2.The ZIF-8/water-glycol slurry was used as a medium to separate coal bed methane by fluidifying the solid adsorbent material.The sorption equilibrium experiment of binary mixture(CH_4/N_2)and slurry was conducted.The selectivity of CH_4 to N_2 is within the range of 2-6,which proved the feasibility of the slurry separation method.The modified Langmuir equation was used to describe the gas-slurry phase equilibrium behavior,and the calculated results were in good agreement with the experimental data.A continuous absorption-adsorption and desorption process on the separation of CH_4/N_2 in slurry is proposed and its mathematical model is also developed.Sensitivity analysis is conducted to determine the operation conditions and the energy performance of the proposed process was also evaluated.Feed gas contains 30 mol%of methane and the methane concentration in product gas is 95.46 mol%with the methane recovery ratio of 90.74%.The total energy consumption for per unit volume of product gas is determined as 1.846 kWh Nm^(-3).Experimental results and process simulation provide basic data for the design and operation of pilot and industrial plant.展开更多
A mechanical separation process was developed for recovering metals from printed circuit board(PCB) scrap;it included three steps:impact crushing,sieving and fluidization separation.The mechanism of the technique was ...A mechanical separation process was developed for recovering metals from printed circuit board(PCB) scrap;it included three steps:impact crushing,sieving and fluidization separation.The mechanism of the technique was based on the difference in the crushabilities of metallic and nonmetallic materials in the PCBs that led to the concentrated distribution of metals in particles of larger sizes and nonmetals mostly in particles of smaller sizes.It was found that crushed PCB particles from 0.125 mm to 1.000 mm contained about 80% of metals in the PCBs.Metals acquired satisfactory liberation in particles smaller than 0.800 mm.The crushed PCB particles were sieved into fractions of different size ranges.Each fraction separately went through a gas-solid fluidized bed operating at a selected optimal gas velocity for the specific size range.Approximately 95% of metals in printed circuit board particles from 0.125 mm to 0.800 mm was recovered by the gas-fluidized bed separator at the selected optimal gas velocity.However,separation of metals from particles smaller than 0.125 mm was not satisfactory.Further study is needed on metal recovery from fine particles.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51176051)the PetroChina Innovation Foundation(2012D- 5006-0210)the Colleges and Universities High-level Talents Program of Guangdong
文摘Coal bed methane (CBM) has a huge potential to be purified to relieve the shortage of natural gas meanwhile to weaken the greenhouse effect. This paper proposed an optimal design strategy for CBM to obtain an integrated process configuration consisting of three each single separation units, membrane, pressure swing absorption, and cryogenics. A superstructure model was established including all possible network configurations which were solved by MINLP. The design strategy optimized the separation unit configuration and operating conditions to satisfy the target of minimum total annual process cost. An example was presented for the separation of CH4/N2 mixtures in coal bed methane (CBM) treatment. The key operation parameters were also studied and they showed the influence to process configurations.
基金Supported by the National Natural Science Foundation of China(No.20206027)and the Natural Science Foundation of Zhejiang Province(No.202046).
文摘A non-linear non-ideal model, taking into account non-linear competitive isotherms, axial dispersion, film mass transfer, intraparticle diffusion, and port periodic switching, was developed to simulate the dynamics of simulated moving bed chromatography (SMBC). The model equations were solved by a new efficient numerical technique of orthogonal collocation on finite elements with periodical movement of concentration vector. The simulated SMBC performance is in accordance with the experimental results reported in the literature for separation of l,1'-bi-2-naphthol enantiomers using SMBC. This model is useful for design, operation, optimization and scale-up of non-linear SMBC for chiral separations with significant non-ideal effects, especially for high solute concentration and small intraparticle diffusion coefficient or large chiral stationary phase particle.
基金Project(2017XKQY012) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(PAPD) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Failure of the surrounding rock around a roadway induced by roof separation is one major type of underground roof-fall accidents.This failure can especially be commonly-seen in a bottom-driven roadway within an extra-thick coal seam("bottom-driven roadway"is used throughout for ease of reference),containing weak partings in their roof coal seams.To determine the upper limit position of the roof interlayer separation is the primary premise for roof control.In this study,a mechanical model for predicting the interlayer separation overlying a bottom-driven roadway within an extra-thick coal seam was established and used to deduce the vertical stress,and length,of the elastic,and plastic zones in the rock strata above the wall of the roadway as well as the formulae for calculating the deflection in different regions of rock strata under bearing stress.Also,an approach was proposed,calculating the stratum load,deflection,and limiting span of the upper limit position of the interlayer separation in a thick coal seam.Based on the key strata control theory and its influence of bedding separation,a set of methods judging the upper limit position of the roof interlayer separation were constructed.In addition,the theoretical prediction and field monitoring for the upper limit position of interlayer separation were conducted in a typical roadway.The results obtained by these two methods are consistent,indicating that the methods proposed are conducive to improving roof control in a thick coal seam.
基金the National Key Basic Research Program of China(No.2012CB214904)the National Natural Science Foundation of China for Innovative Research Group(No.51221462)+2 种基金the National Natural Science Foundation of China(Nos.51304196,51134022,and 51174203)the Natural Science Foundation of Jiangsu Province of China(No. BK2012136)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120095130001)
文摘Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at disposing the problem that fine particles of waste printed circuit boards cannot be separated efficiently so as to obtain further insight about the underlying mechanisms and demonstrate the separation feasibility in the tapered column separation bed.In this work,a Computational Fluid Dynamics(CFD) coupled with Discrete Element Method(DEM) model for two-phase flow has been extended to simulate the fluid-solid flow in the tapered column separation bed.Its validity is demonstrated by its successful capturing the key features of particles' flow pattern,velocity,the pressure distribution,the axial position with time and axial force for particles with different densities.Simulation results show that the plastic particles and resin particles become overflow,while copper particles,iron particles and aluminum particles successively become underflow,with a discharge water flow rate of 1 m^3/h,an obliquity of 30°.The simulated results agree reasonably well with the experimental observation.Using this equipment to separate waste PCBs is feasible,theoretically.
基金supported by the National Natural Science Foundation of China(No.51474213)the National Natural Science Foundation of China(No.51374205)+1 种基金the Fundamental Research Funds for the Central Universities(No.2014XT05)A Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘To improve the separation efficiency of a conventional Teetered Bed Separator(TBS) in beneficiation of fine coal with a wide size range,an Aeration TBS(A-TBS) was proposed in this investigation.The bubbles were introduced to A-TBS by a self-priming micro-bubble generator.This study theoretically analyzed the effect of bubbles on the difference in hindered settling terminal velocity between different density particles,investigated the impact of superficial water velocity(V_(SW)) and superficial gas velocity(V_(Sg)) on bed fluidization,and compared the performance of the TBS and A-TBS in treating 1-0.25 mm size fraction particles.The results show that the expansion degree of fluidized bed which was formed by different size particles or has different initial height,is increased by the introduction of bubbles.Compared with the TBS,at the same level of clean coal ash content,the A-TBS shows an increase in the combustible recovery of clean coal,ash content of tailings,and practical separation density by 5.26%,6.56%,and 0.088 g/cm3 respectively,while it shows a decrease in the probable error(E_p) and V_(SW) by 0.031 and 3.51 mm/s,respectively.The addition of bubbles at a proper amount not only improves the separation performance of TBS,but also reduces the upward water velocity.
基金Project (No. 20040335045) supported by the Specialized ResearchFund for the Doctoral Program of Higher Education of China
文摘A simulated moving bed (SMB), equipped with eight silica-gel columns, was used to separate phosphatidylcholine (PC) from soybean phospholipids. The effects of flow rate in Sections 2 (Q2) and 3 (Q3), switching time, feed flow rate and feed concentration on the operating performance parameters: purity, recovery, productivity and desorbent consumption were studied. Operating conditions leading to more than 90% purity in both outlet streams have been identified, together with those achieving optimal performance. Regions leading to complete separation are observed and explained theoretically. As the mass-transfer effect was not considered, the triangle theory only gives initial guesses for the optimal operating conditions.
基金The National Natural Science Funds Committee(50174035)
文摘A new experiment was made on the developing of bed separations and mining subsidence from Tangshan T2192 working face by equivalent materials simulation.The overburden deformation and the developing of bed separations with working face advanc- ing was simulated by a new model.The results show that the maximum value of bed separations moved forward gradually along with the working face advancing;the maxi- mum value of bed separations is 0.31~0.50 times of mining thickness.The key strata have a great influence upon surface subsidence during the overburden movement process.The mechanics parameters of new experiment are fitted with results in fields perfectly.
基金Foundation item:Key Project of Natural Seien6e Foundation of China(No:50434020 and NO:50274044)Key Project of Science Foundation of Shandong Province(No:Z20031:02)
文摘To control land surface subsidence caused the underground mineral exploitation and the catastrophic phenomena such as serious damage of buildings, waterbodies, cultivated lands, railways, bridges caused by land subsidence, bed separation grouting technology of overburden is put forward. To provide theoretical support for the technology, the characteristics and the mechanics mechanism of mining overburden from layer-split to formation of bed separation are studied. On the basis of elastic sheet board theory, calculation formula of rock sheet deflection is presented, and the mechanics criteria of the separation formation and the calculation formula of bed separation volume are set up. Finally, the applications and technics of bed separation grout technology of mining overburden to control land subsidence in china are introduced.
基金National Natural Science Foundation of China(grant Nos.52220105008,52261135540)China National Funds for Distinguished Young Scientists(grant No.52125403)+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(grant No.SJCX23_1302)the Graduate Innovation Program of China University of Mining and Technology(grant No.2023WLJCRCZL081).
文摘Gas–solid separation fluidized bed is a typical method for coal separation without water utilization.Geldart A particles is also considered as the ideal dense medium to strengthen separation efficiency.Fluidization stability reflects the bed pressure fluctuations and the distribution of bubble and emulsion phases,affecting the separation performance.And the main frequency of pressure fluctuations can directly reflect the degree of pressure fluctuations.Therefore,the detailed fluidization stability is analyzed combined the method of standard deviation of pressure fluctuations,power spectral density,etc.,for Geldart A particles.The results showed that maintaining an appropriate gas velocity resulted in an average bed pressure of around 2000 Pa.The main frequency is mainly concentrated around 1–1.5 Hz.Finally,a prediction model of the main frequency of pressure fluctuations is established,and the error can be controlled within±0.15.The investigation further proved the stable fluidization of Geldart A particles and provides a method for predicting the main frequency of pressure fluctuations in the gas–solid separation fluidized bed.
基金Projects(51221462)supported by the National Natural Science Foundation of ChinaProject(2014QNA28)supported by the Fundamental Research Funds for the Central Universities,China
文摘The separation characteristic of raw coal from Luoyang mining area, China, was investigated by applying a dry coal beneficiation flowsheet with the dense medium gas-solid fluidized bed as main separating equipment. The experimental and simulation results indicate that the dense medium gas-solid fluidized bed can provide uniform distribution and stable fluctuation of bed densities at various heights. Two types of different separating approaches were compared using the dry coal beneficiation flowsheet. Compared with obtaining cleaning coal in the first stage of the flowsheet, a higher yield of the cleaning coal and better separation efficiency can be achieved when discharging gangue in the first stage. Finally, the results indicate that 64.86% pure cleaning coal with an ash content of 11.77% and 13.53% middlings were obtained, and 21.61% gangue was removed in two successive separation stages with the probable errors of 0.05 and 0.07 g/cm3, respectively.
基金The financial supports received from the National Natural Science Foundation of China(21522609,21636009 and 21878328)the National Key Research and Development Program of China(Nos.2017YFC0307302,2016YFC0304003)+1 种基金the Science Foundation of China University of Petroleum,Beijing(No.2462018BJC004)Beijing Science and Technology Program,China(No.Z181100005118010)。
文摘Coal bed methane has been considered as an important energy resource.One major difficulty of purifying coal bed methane comes from the similar physical properties of CH_4 and N_2.The ZIF-8/water-glycol slurry was used as a medium to separate coal bed methane by fluidifying the solid adsorbent material.The sorption equilibrium experiment of binary mixture(CH_4/N_2)and slurry was conducted.The selectivity of CH_4 to N_2 is within the range of 2-6,which proved the feasibility of the slurry separation method.The modified Langmuir equation was used to describe the gas-slurry phase equilibrium behavior,and the calculated results were in good agreement with the experimental data.A continuous absorption-adsorption and desorption process on the separation of CH_4/N_2 in slurry is proposed and its mathematical model is also developed.Sensitivity analysis is conducted to determine the operation conditions and the energy performance of the proposed process was also evaluated.Feed gas contains 30 mol%of methane and the methane concentration in product gas is 95.46 mol%with the methane recovery ratio of 90.74%.The total energy consumption for per unit volume of product gas is determined as 1.846 kWh Nm^(-3).Experimental results and process simulation provide basic data for the design and operation of pilot and industrial plant.
基金the Shanghai EXPO Special Project from the Ministry of Science and Technology of China under the Grant No. 2004BA908B02
文摘A mechanical separation process was developed for recovering metals from printed circuit board(PCB) scrap;it included three steps:impact crushing,sieving and fluidization separation.The mechanism of the technique was based on the difference in the crushabilities of metallic and nonmetallic materials in the PCBs that led to the concentrated distribution of metals in particles of larger sizes and nonmetals mostly in particles of smaller sizes.It was found that crushed PCB particles from 0.125 mm to 1.000 mm contained about 80% of metals in the PCBs.Metals acquired satisfactory liberation in particles smaller than 0.800 mm.The crushed PCB particles were sieved into fractions of different size ranges.Each fraction separately went through a gas-solid fluidized bed operating at a selected optimal gas velocity for the specific size range.Approximately 95% of metals in printed circuit board particles from 0.125 mm to 0.800 mm was recovered by the gas-fluidized bed separator at the selected optimal gas velocity.However,separation of metals from particles smaller than 0.125 mm was not satisfactory.Further study is needed on metal recovery from fine particles.