Low-molecular-weight (LMW) organic acids exist widely in soils and play an important role in soil processes such as mineral weathering, nutrient mobilization and A1 detoxification. In this research, a batch experime...Low-molecular-weight (LMW) organic acids exist widely in soils and play an important role in soil processes such as mineral weathering, nutrient mobilization and A1 detoxification. In this research, a batch experiment was conducted to examine the effects of LMW organic acids on dissolution of aluminum in two variably charged soils, an Ultisol and an Oxisol. The results showed that the LMW organic acids enhanced the dissolution of A1 in the two investigated soils in the following order: citric 〉 oxalic 〉 malonic 〉 malic 〉 tartaric 〉 salicylic 〉 lactic 〉 maleic. This was generally in agreement with the magnitude of the stability constants for the Al-organic complexes. The effects of LMW organic acids on Al dissolution were greater in the Ultisol than in the Oxisol as compared to their controls. Also, the accelerating effects of citric and oxalic acids on dissolution of A1 increased with an increase in pH, while the effects of lactic and salicylic acids decreased. Additionally, when the organic acid concentration was less than 0.2 mmol L-I, the dissolution of A1 changed Iittle with increase in acid concentration. However, when the organic acid concentration was greater than 0.2 mmol L^-1,the dissolution of A1 increased with increase in acid concentration. In addition to the acid first dissociation constant and stability constant of Al-organic complexes, the promoting effects of LMW organic acids on dissolution of A1 were also related to their sorption-desorption equilibrium in the soils.展开更多
SO 4 2- and Zn 2+ or Cd 2+ were added to three variable charge soils in different sequences. In one sequence sulfate was added first, and in the other, Zn 2+ or Cd 2+ ...SO 4 2- and Zn 2+ or Cd 2+ were added to three variable charge soils in different sequences. In one sequence sulfate was added first, and in the other, Zn 2+ or Cd 2+ first. The addition of sulfate to the system invariably caused an increase in adsorption of the heavy metal added, with the effect more remarkable when the soil reacted with the sulfate prior to the metal. The shift in pH 50 for both Zn and Cd adsorption was also comparatively larger in the first sequence of reactions. It was suggested that the increase in negative charge density and the resultant negative potential of the soil were the primary cause of the pronounced effect of sulfate on adsorption of Zn or Cd, and the formation of the ternary surface complex S SO 4 M might also play a role in the effect.展开更多
Low-molecular-weight (LMW) organic acids exist widely in soils and have beenimplicated in many soil processes. The objective of the present paper was to evaluate effect of twoLMW organic acids, citric acid and oxalic ...Low-molecular-weight (LMW) organic acids exist widely in soils and have beenimplicated in many soil processes. The objective of the present paper was to evaluate effect of twoLMW organic acids, citric acid and oxalic acid, on Cl^-adsorption by three variable charge soils, alatosol, a lateritic red soil and a red soil, using a batch method. The results showed that thepresence of citric acid and oxalic acid led to a decrease in Cl^- adsorption with larger decreasesfor citric acid. Among the different soils Cl^- adsorption in the lateritic red soil and the redsoil was more affected by both the LMW organic acids than that in the latosol.展开更多
The types, contents and morphologies of crystalline Fe oxides and their relations to phosphate adsorptionon the clay fractions in soils with variable charge in southern China were investigated by means of XRD, TEM,EMA...The types, contents and morphologies of crystalline Fe oxides and their relations to phosphate adsorptionon the clay fractions in soils with variable charge in southern China were investigated by means of XRD, TEM,EMA and chemical analysis methods.Results indicated that the types and contents of crystalline Fe oxidesvaried with the soils examined. The dominant crystalline Fe oxide was hematite in the latosols and goethitesin the red soils.In yellow-brown soils, the only crystalline Fe oxide was goethite.The difference between Aldand Alo came mainly from the Al substituting for Fe in the pe oxides. The crystal morphology of goethiteappeared mainly as subrounded flat or iso-dimensional rather than acicular particles. Hematites occurredin plates of various thickness. Their MCDa/MCDc ratios in the latosols and red soils were generally above1.5 and below 1.5, respectively. The MCD values of goethites and hematites were 15-25nm and 20-35nm,and their specific surface areas were 80-120m ̄2/g and 35-75m ̄2/g, respectively.The goethite crystals weregenerally smaller. Variations of the total amounts of crystalline Fe oxi es in clay fractions were not related tophosphate adsorption. The types, contents and morphologies of crystalline Fe oxides in the soils remarkablyaffected phosphate adsorption characteristics of the soils. The phosphate adsorption of goethite was muchgreater than that of hematite. The higher the MCD /MCDc rotio of hematite, the lower the phosphateadsorption.展开更多
Two cells consisting of a chloride-selective electrode and a nitrate-selective electrode or of a chloride-selective electrode and a perchlorate-selective electrode were directly put in the soil suspension to determine...Two cells consisting of a chloride-selective electrode and a nitrate-selective electrode or of a chloride-selective electrode and a perchlorate-selective electrode were directly put in the soil suspension to determine the concentration ratios Cl-/ NO3- or Cl-/ ClO4- for studying the adsorption of the three anions by variable charge soils. It was found that all the concentration ratios CCl- / CNO3- and CCl- / CClO4- in suspension were smaller than unity when soil samples were in equilibrium with mixed KCl and KNO3 or KCl and KClO4 solutions of equal concentration. The order of the amount of chloride, nitrate and perchlorate adsorbed by variable charge soils was Cl-> NO3-> ClO4- when the soils adsorbed these anions from the solution containing equal concentrations of Cl-, NO3- and ClO4-. Such factors as the pH of the suspension, the iron oxide content of the soil etc. could affect the amounts and the ratios of anions adsorbed. The adsorption was chiefly caused by coulombic attraction, but a covalent force between the anion and the metal atom on the surface of soil particles may also be involved, at least for Cl- ions, even for NO3- ions.展开更多
A self-made constant pH automated titration instrument was used to study thekinetics of hydroxyl release during selenite reacting with variable charge soils. The rate ofhydroxyl release was very rapid at the first sev...A self-made constant pH automated titration instrument was used to study thekinetics of hydroxyl release during selenite reacting with variable charge soils. The rate ofhydroxyl release was very rapid at the first several minutes, then gradually slowed down, and atlast did not change any more. The experimental data was well fitted by the Langmuir kineticequation, arid with increasing selenite concentration or decreasing solution pH, the reaction lastedlonger, the maximum of hydroxyl release (x_m) increased, and the binding constant (k) decreased.The time of hydroxyl release with Xuwen latosol was much longer than that with Jinxian red soil.展开更多
The variation in apparent charge of two typical variable charge soils resulting from Zn adsorption were studied by KC1 saturation and NH4NO3 replacement methods. Results showed that zinc were adsorbed specifically to ...The variation in apparent charge of two typical variable charge soils resulting from Zn adsorption were studied by KC1 saturation and NH4NO3 replacement methods. Results showed that zinc were adsorbed specifically to those sites with negative charge. As in different pH ranges, the percentages of specific and electrostatic adsorptions of zinc and the mechanisms of specific adsorption were different, the effects of Zn adsorption on apparent charge were varied and could be characterized as: when 1 mmol Zn2+ was adsorbed, a change about 1 mmol in the apparent charge was observed in the low pH range (Ⅰ), 1.4 to 1.5 mmol in the moderate pH range (Ⅱ) and 0.55 to 0.6 mmol in the high pH range (Ⅲ). These experimental data, in terms of soil charge, proved once more author's conclusion in the preceding paper (Sun, 1993) that in accordance with the behaviors of Zn adsorption by the variable charge soils in relation to pH, three pH ranges with different adsorption mechanisms were delineated; that is, in Range Ⅰ, specific adsorption was the predominant mechanism, in Ranges Ⅱ and Ⅲ, specific and electrostatic adsorptions co-existed, but their specific adsorption mechanisms were not identical.展开更多
Two variable charge soils were incubated with biochars derived from straws of peanut, soybean, canola, and rice to investigate the effect of the biochars on their chemical properties and Pb(II) adsorption using batc...Two variable charge soils were incubated with biochars derived from straws of peanut, soybean, canola, and rice to investigate the effect of the biochars on their chemical properties and Pb(II) adsorption using batch experiments. The results showed soil cation exchange capacity (CEC) and pH significantly increased after 30 d of incubation with the biochars added. The incorporation of the biochars markedly increased the adsorption of Pb(II), and both the electrostatic and non-electrostatic adsorption mechanisms contributed to Pb(II) adsorption by the variable charge soils. Adsorption isotherms illustrated legume- straw derived biochars more greatly increased Pb(II) adsorption on soils through the non-electrostatic mechanism via the formation of surface complexes between Pb(II) and acid functional groups of the biochars than did non-legume straw biochars. The adsorption capacity of Pb(II) increased, while the desorption amount slightly decreased with the increasing suspension pH for the studied soils, especially in a high suspension pH, indicating that precipitation also plays an important role in immobilizing Pb(II) to the soils.展开更多
Adsorption of potassium and sodium ions by four typical variable charge soils of South China was studied. The results indicated that the variable charge soils saturated with H and Al showed a much higher preference fo...Adsorption of potassium and sodium ions by four typical variable charge soils of South China was studied. The results indicated that the variable charge soils saturated with H and Al showed a much higher preference for potassium ions relative to sodium ions, and this tendency could not be changed by such factors as the pH, the concentration of the cations, the dielectric constant of solvent, the accompanying anions and the iron oxide content etc., suggesting that this difference in affinity is caused by the difference in the nature of the two cations. It was observed that a negative adsorption of sodium ions by latosol and lateritic red soil in a mixed system containing equal amount of potassium and sodium ions at low pH, which is caused by a competitive adsorption of potassium and sodium ions and repulsion of positive charge on the surfaces of soil particles for cations. The adsorption of potassium and sodium ions increased with the decreases in the dielectric constant of solvent and the iron oxide content. Sulfate affected the adsorption of potassium and sodium ions through changing the surface properties of the soils.展开更多
Different mathematical methods, including linearization, differential, integration and nonlinear least squares approximation (Newton-Marquardt method), were used to fit different kinetic equations, such as zero-order,...Different mathematical methods, including linearization, differential, integration and nonlinear least squares approximation (Newton-Marquardt method), were used to fit different kinetic equations, such as zero-order, first-order (i. e, membrane diffusion), second-order, parabolic-diffusion, Elovich, two-constant equations, to the experimental data of Pb2+ and Cu2+ adsorption on variable charge soils and kaolinite. Assuming each M2+ occupied two adsorption sites, two more equations, the so-called surface second-order equation and third-order equation were derived and compared with the above equations according to the fitting results, which showed that the second-order equation and surface second-order equation, being one equation in different expressions under some conditions, were better than the other equations in describing the Pb2+ and Cu2+ adsorption kinetics, and the latter was the best.展开更多
Studies were carried out by using electrophoretic method on the effects of the specific adsorption of the anions,such as SO4^2-,PO4^3-,and F^- ions,the cations,such as Ca^2+,Mn^2+,Zn^2+,and Cu^2+,ions,and the anions a...Studies were carried out by using electrophoretic method on the effects of the specific adsorption of the anions,such as SO4^2-,PO4^3-,and F^- ions,the cations,such as Ca^2+,Mn^2+,Zn^2+,and Cu^2+,ions,and the anions and cations coexisting,such as Zn^2+ and SO4^2= ions,on electrokinetic properties of the red soils as typical variable charge soils in China concerning variation in the specific ion species and concentrations,with an emphasis on the interaction between soil colloid surfaces and the ions in soil solutions.The results showed that the adsorption of specific ions led to a very pronounced decrease in zeta potentials of the soil colloids and a shift of the IEPs to lower values for specific anions,and an obvious increase in zeta potentials of the soil colloids and a shift of the IEPs to higher values for specific cations.Under circumstances of the specific anions and cations coexisting,for instance,Zn^2+ and SO4^2- ions,the zeta potentials changed with values higher than the value for SO4^2- alone and lower than that for Zn^2+ alone,and the IEP was between that for Zn^2+ and that for SO4^2-.The adsorption of Zn^2+ and Cu^2+ ions resulted in a reversal of the zeta potentials,and appearance of two IEPs for Zn^2+ and no IEP for Cu^2+,exhibiting interesting special effects of these kinds of metal ions.The higher the concentrations of the ions,the greater the change of the electrokinetic properties.展开更多
Interactions of potassium and calcium ions with four typical variable charge soils in South China were examined by measuring pK-0.5pCa value with a potassium ion-selective electrode and a calcium ion-selective electro...Interactions of potassium and calcium ions with four typical variable charge soils in South China were examined by measuring pK-0.5pCa value with a potassium ion-selective electrode and a calcium ion-selective electrode,and pK value with a potassium ion-selective electrode.The results showed that adsorption of potassium and calcium ions increased with soil suspension pH,and the tendency of the pK-0.5pCa value changing with pH differed with respect to pH range and potassium to calcium ratio.Adsorption of equal amount of calcium and potassium ions led to release of an identical number of protons,suggesting similar adsorption characteristics of these two ions when adsorbed by variable charge soils.Compared with red soil,latosol and lateritic red soil had higher adsorption selectivities for calcium ion.The red soil had a greater affinity for potassium ion than that for calcium ion at low concentration,which seems to result from its possession of 2:1 type minerals,such as vermiculite and mica with a high affinity for potassium ion.The results indicated that adsorption of potassium and calcium ions by the variable charge soils was chiefly caused by the electrostatic attraction between the cations and the soil surfaces.Moreover,it was found that sulfate could affect the adsorption by changing soil surface properties and by forming ion-pair.展开更多
A new technique for studying the adsorption kinetics of heavy metals,Pb^2+ and Cu^2+,on variable charge surfaces was established with two selective electrodes and microcomputer control system.Feasibility of the techni...A new technique for studying the adsorption kinetics of heavy metals,Pb^2+ and Cu^2+,on variable charge surfaces was established with two selective electrodes and microcomputer control system.Feasibility of the technique,including interference of other ions (mainly Fe^3+ and Al^3+),response time of electrodes,and the pH range of testing,was studied.Comparision with the most widely used miscible displacement technique,which was considered insufficient in studying 30-minute rapid reactions,at present time showed that the new technique was more advantageous in testing in situ,easy to operate,and economic.展开更多
The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron ...The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron oxides ( Feo ) from the soils with sodium dithionite and acid ammonium oxalate solution respectively. ( 2 ) Add 2% glucose ( on the basis of air-dry soil weight ) to soils and incubate under submerged condition to activate iron oxides, and then the mixtures are dehydrated and air-dried to age iron oxides. ( 3 ) Precipitate various crystalline forms of iron oxides onto kaolinite. The results showed that free iron oxides ( Fed ) were the chief carrier of variable positive charges. Of which crystalline iron oxides ( Fed-Feo ) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges, and did little influence on negative charges. Whereas the amorphous iron oxides ( Feo ) , which presented mainly as a coating with a large specific surface area, not only had positive charges, but also blocked the negative charge sites in soils. Submerged incubation activated iron oxides in the soils, and increased the amount of amorphous iron oxides and the degree of activation of iron oxide, which resulted in the increase of positive and negative charges of soils. Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide, and also led to the decrease of positive and negative charges. Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges. Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges. Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.展开更多
The release of hydroxyl ions from two variable charge soils associated with the adsorption of chloride in NaClO4 solutions was examined. The complete release required about 10 minutes. The release decreased with the i...The release of hydroxyl ions from two variable charge soils associated with the adsorption of chloride in NaClO4 solutions was examined. The complete release required about 10 minutes. The release decreased with the increase in the NaClO4 concentration at first and eventually was little affected by the latter. The adsorption of Cl- was almost linearly related with the quantity of NaCl added to the system, while the OHrelease-NaCl curve varied with the soil type and the concentration of NaClO4. The logarithm of the quantity of released OH- was linearly related with the pH. The ratio of released OH- to adsorbed Cl- was larger in dilute NaClO4 solutions than in concentrated solutions and decreased with increasing NaCl.展开更多
Zn adsorption by pure oxides or in the presence of a high concentration of inner electrolyte has been extensively studied. But, in studies on Zn adsorption in the complicated soil system, especially in variable charge...Zn adsorption by pure oxides or in the presence of a high concentration of inner electrolyte has been extensively studied. But, in studies on Zn adsorption in the complicated soil system, especially in variable charge soils, profound knowledge about the adsorption mechanism still lacks. In this paper, taking Zn ion adsorption by two typical variable charge soils as the object of the study, author discusses the relation between Zn adsorption and pH and possible adsorption mechanisms. The results showed that in the low pH range where the amount of Zn adsorbed did not exceed 50% of Zn added, the specific adsorption was the dominant mechanism. The species of Zn specifically adsorbed was free Zn2+ ion. In the middle and high pH ranges, the mechanisms of specific and electrostatic adsorptions, co-existed, accounting for about 70% and 30% , respectively. Noteworthily, in the high pH range, the hydroxyl Zn ion (ZnOH +) from Zn2+ hydrolysis probably was a preferable species for specific adsorption.展开更多
The study about the adsorption of phosphate on four variable charge soils and some minerals revealed that two stage adsorption appeared in the adsorption isotherms of phosphate on 4 soils and there was a maximum adsor...The study about the adsorption of phosphate on four variable charge soils and some minerals revealed that two stage adsorption appeared in the adsorption isotherms of phosphate on 4 soils and there was a maximum adsorption on Al-oxide-typed surfaces between pH 3.5 to pH 5.5 as suspension pH changed from 2 to 9, but the adsorption amount of phosphate decreased continually as pH rose on Fe-oxide typed surfaces. The adsorption amount of phosphate and the maximum phosphate adsorption pH decreased in the order of yellow-red soil > lateritic red soil > red soil > paddy soil, which was coincided with the content order of amorphous Al oxide. The removement of organic matter and Fe oxide made the maximum phosphate adsorption pH rise from 4.0 to 5.0 and 4.5, respectively. The desorption curves with pH of four soils showed that phosphate desorbed least at pH 5. Generally the desorption was contrary to the adsorption with pH changing. There was a good accordance between adsorption or desorption and the concentration of Al in the suspension. The possible mechanisms of phosphate adsorption are discussed.展开更多
Cu secondary adsorption by three variable charge soils collected from hubei Province and Hunan Province was investigated.The amount of Cu secondary adsorption increased with that of SO4^2- elementary adsorption and co...Cu secondary adsorption by three variable charge soils collected from hubei Province and Hunan Province was investigated.The amount of Cu secondary adsorption increased with that of SO4^2- elementary adsorption and conformed with the Langmuir,freundlich and Temkin isotherms.Desorption of secondary-adsorbed Cu indicated that the hysteresis ratio decreased as Cu secondary adsorption increased,which meant that secondry-adsorbed Cu existed not only in the exchangeable form but also in the bridge form and specifically adsorbed form.The amount of Cu secondary adsorption increased with the temperature.展开更多
Some electrochemical properties,such as PH,Eh,and voltammetric behavior,of the decomposition products of rice straw and the in eractions of these products with soils were studied.The PH,Eh,and amounts of organic reduc...Some electrochemical properties,such as PH,Eh,and voltammetric behavior,of the decomposition products of rice straw and the in eractions of these products with soils were studied.The PH,Eh,and amounts of organic reducing substances changed markedly during the 60-day anaerobic decomposition.pH decreased sharply to pH 5 on the tenth day and then increased gradually to 7 on the 45th day.The amouats of organic reducing substances increased almost synchronously with the fall of redox potential during the first 15 days.The differential pulse voltammetric(dpv) behavior changed not only in the peak current but also in the peak potential.The fractions with apparent molecular weights lower than 200 dations appeared to be active in dpv behavior.The electric charge of organic reducing substances was closely related to the decomposition stage.The 6th day of incubation was the crucial time before and after which the major part of the components was negatively charged and positively charged, respectively.The group with a low apparent molecular weight and a negative charge was the main components responsible for the lower anodic peak potentials.They were oxidized first during the interactions of the organic reducing substances with soils.展开更多
For the purpose of evaluating the role of ligand exchange of sulfate ions in retarding the rate of acidification of variable charge soils, the changes in pH after the addition of different amounts of HNO_3 or H_2SO_4 ...For the purpose of evaluating the role of ligand exchange of sulfate ions in retarding the rate of acidification of variable charge soils, the changes in pH after the addition of different amounts of HNO_3 or H_2SO_4 to representative soils of China were measured. A difrerence between pH changes caused by the two kinds of acids was observed only for variable charge soils and kaolinite, but not for consted charge soils and bentonite. The larger the proportion of H_2SO_4 in the HNO_3-H_2SO_4 mixture, the lower the calculated H ̄+ ion activities remained in the suspension. The difference in H ̄+ ion activities between H_2SO_4 systems and HNO_3 systems was larger for soils with a low base-saturation (BS) percentage than those with a high BS percentage. The removal of free iron oxides from the soil led to a decrease in the difference, while the coating of Fe_2O_3 ona bentonite resulted in a remarkable appearance of the difference. The effect of ligand exchange on the acidity status of the soil varied with the soil type. SurfaCe soils with a hash organic matter content showed a less pronounced effect of ligand exchange than subsoils did. It was estimated that when acid rain chiefly containing H_2SO_4 was deposited on variable charge soils the acidilication rate might be slower by 20%-40% than that when the acid rain chiefly contained HNO_3 for soils with a high organic matter content, and that the rate might be half of that caused by HNO_3 for soils with a low organic matter content, especially for latosols.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 40271062).
文摘Low-molecular-weight (LMW) organic acids exist widely in soils and play an important role in soil processes such as mineral weathering, nutrient mobilization and A1 detoxification. In this research, a batch experiment was conducted to examine the effects of LMW organic acids on dissolution of aluminum in two variably charged soils, an Ultisol and an Oxisol. The results showed that the LMW organic acids enhanced the dissolution of A1 in the two investigated soils in the following order: citric 〉 oxalic 〉 malonic 〉 malic 〉 tartaric 〉 salicylic 〉 lactic 〉 maleic. This was generally in agreement with the magnitude of the stability constants for the Al-organic complexes. The effects of LMW organic acids on Al dissolution were greater in the Ultisol than in the Oxisol as compared to their controls. Also, the accelerating effects of citric and oxalic acids on dissolution of A1 increased with an increase in pH, while the effects of lactic and salicylic acids decreased. Additionally, when the organic acid concentration was less than 0.2 mmol L-I, the dissolution of A1 changed Iittle with increase in acid concentration. However, when the organic acid concentration was greater than 0.2 mmol L^-1,the dissolution of A1 increased with increase in acid concentration. In addition to the acid first dissociation constant and stability constant of Al-organic complexes, the promoting effects of LMW organic acids on dissolution of A1 were also related to their sorption-desorption equilibrium in the soils.
文摘SO 4 2- and Zn 2+ or Cd 2+ were added to three variable charge soils in different sequences. In one sequence sulfate was added first, and in the other, Zn 2+ or Cd 2+ first. The addition of sulfate to the system invariably caused an increase in adsorption of the heavy metal added, with the effect more remarkable when the soil reacted with the sulfate prior to the metal. The shift in pH 50 for both Zn and Cd adsorption was also comparatively larger in the first sequence of reactions. It was suggested that the increase in negative charge density and the resultant negative potential of the soil were the primary cause of the pronounced effect of sulfate on adsorption of Zn or Cd, and the formation of the ternary surface complex S SO 4 M might also play a role in the effect.
基金Project supported by the Knowledge Innovation Program Foundation of the Chinese Academy of Sciences (No. ISSASIP0108) the National Natural Science Foundation of China (No. 40271062).
文摘Low-molecular-weight (LMW) organic acids exist widely in soils and have beenimplicated in many soil processes. The objective of the present paper was to evaluate effect of twoLMW organic acids, citric acid and oxalic acid, on Cl^-adsorption by three variable charge soils, alatosol, a lateritic red soil and a red soil, using a batch method. The results showed that thepresence of citric acid and oxalic acid led to a decrease in Cl^- adsorption with larger decreasesfor citric acid. Among the different soils Cl^- adsorption in the lateritic red soil and the redsoil was more affected by both the LMW organic acids than that in the latosol.
文摘The types, contents and morphologies of crystalline Fe oxides and their relations to phosphate adsorptionon the clay fractions in soils with variable charge in southern China were investigated by means of XRD, TEM,EMA and chemical analysis methods.Results indicated that the types and contents of crystalline Fe oxidesvaried with the soils examined. The dominant crystalline Fe oxide was hematite in the latosols and goethitesin the red soils.In yellow-brown soils, the only crystalline Fe oxide was goethite.The difference between Aldand Alo came mainly from the Al substituting for Fe in the pe oxides. The crystal morphology of goethiteappeared mainly as subrounded flat or iso-dimensional rather than acicular particles. Hematites occurredin plates of various thickness. Their MCDa/MCDc ratios in the latosols and red soils were generally above1.5 and below 1.5, respectively. The MCD values of goethites and hematites were 15-25nm and 20-35nm,and their specific surface areas were 80-120m ̄2/g and 35-75m ̄2/g, respectively.The goethite crystals weregenerally smaller. Variations of the total amounts of crystalline Fe oxi es in clay fractions were not related tophosphate adsorption. The types, contents and morphologies of crystalline Fe oxides in the soils remarkablyaffected phosphate adsorption characteristics of the soils. The phosphate adsorption of goethite was muchgreater than that of hematite. The higher the MCD /MCDc rotio of hematite, the lower the phosphateadsorption.
文摘Two cells consisting of a chloride-selective electrode and a nitrate-selective electrode or of a chloride-selective electrode and a perchlorate-selective electrode were directly put in the soil suspension to determine the concentration ratios Cl-/ NO3- or Cl-/ ClO4- for studying the adsorption of the three anions by variable charge soils. It was found that all the concentration ratios CCl- / CNO3- and CCl- / CClO4- in suspension were smaller than unity when soil samples were in equilibrium with mixed KCl and KNO3 or KCl and KClO4 solutions of equal concentration. The order of the amount of chloride, nitrate and perchlorate adsorbed by variable charge soils was Cl-> NO3-> ClO4- when the soils adsorbed these anions from the solution containing equal concentrations of Cl-, NO3- and ClO4-. Such factors as the pH of the suspension, the iron oxide content of the soil etc. could affect the amounts and the ratios of anions adsorbed. The adsorption was chiefly caused by coulombic attraction, but a covalent force between the anion and the metal atom on the surface of soil particles may also be involved, at least for Cl- ions, even for NO3- ions.
基金Project supported by the National Natural Science Foundation of China (Nos. 49971046 and 49831005).
文摘A self-made constant pH automated titration instrument was used to study thekinetics of hydroxyl release during selenite reacting with variable charge soils. The rate ofhydroxyl release was very rapid at the first several minutes, then gradually slowed down, and atlast did not change any more. The experimental data was well fitted by the Langmuir kineticequation, arid with increasing selenite concentration or decreasing solution pH, the reaction lastedlonger, the maximum of hydroxyl release (x_m) increased, and the binding constant (k) decreased.The time of hydroxyl release with Xuwen latosol was much longer than that with Jinxian red soil.
文摘The variation in apparent charge of two typical variable charge soils resulting from Zn adsorption were studied by KC1 saturation and NH4NO3 replacement methods. Results showed that zinc were adsorbed specifically to those sites with negative charge. As in different pH ranges, the percentages of specific and electrostatic adsorptions of zinc and the mechanisms of specific adsorption were different, the effects of Zn adsorption on apparent charge were varied and could be characterized as: when 1 mmol Zn2+ was adsorbed, a change about 1 mmol in the apparent charge was observed in the low pH range (Ⅰ), 1.4 to 1.5 mmol in the moderate pH range (Ⅱ) and 0.55 to 0.6 mmol in the high pH range (Ⅲ). These experimental data, in terms of soil charge, proved once more author's conclusion in the preceding paper (Sun, 1993) that in accordance with the behaviors of Zn adsorption by the variable charge soils in relation to pH, three pH ranges with different adsorption mechanisms were delineated; that is, in Range Ⅰ, specific adsorption was the predominant mechanism, in Ranges Ⅱ and Ⅲ, specific and electrostatic adsorptions co-existed, but their specific adsorption mechanisms were not identical.
基金supported by the Key Technoligies R&D Program of China during the 12th Five-Year Plan period (2012BAJ24B06)the National Natural Science Foundation of China (41230855)
文摘Two variable charge soils were incubated with biochars derived from straws of peanut, soybean, canola, and rice to investigate the effect of the biochars on their chemical properties and Pb(II) adsorption using batch experiments. The results showed soil cation exchange capacity (CEC) and pH significantly increased after 30 d of incubation with the biochars added. The incorporation of the biochars markedly increased the adsorption of Pb(II), and both the electrostatic and non-electrostatic adsorption mechanisms contributed to Pb(II) adsorption by the variable charge soils. Adsorption isotherms illustrated legume- straw derived biochars more greatly increased Pb(II) adsorption on soils through the non-electrostatic mechanism via the formation of surface complexes between Pb(II) and acid functional groups of the biochars than did non-legume straw biochars. The adsorption capacity of Pb(II) increased, while the desorption amount slightly decreased with the increasing suspension pH for the studied soils, especially in a high suspension pH, indicating that precipitation also plays an important role in immobilizing Pb(II) to the soils.
文摘Adsorption of potassium and sodium ions by four typical variable charge soils of South China was studied. The results indicated that the variable charge soils saturated with H and Al showed a much higher preference for potassium ions relative to sodium ions, and this tendency could not be changed by such factors as the pH, the concentration of the cations, the dielectric constant of solvent, the accompanying anions and the iron oxide content etc., suggesting that this difference in affinity is caused by the difference in the nature of the two cations. It was observed that a negative adsorption of sodium ions by latosol and lateritic red soil in a mixed system containing equal amount of potassium and sodium ions at low pH, which is caused by a competitive adsorption of potassium and sodium ions and repulsion of positive charge on the surfaces of soil particles for cations. The adsorption of potassium and sodium ions increased with the decreases in the dielectric constant of solvent and the iron oxide content. Sulfate affected the adsorption of potassium and sodium ions through changing the surface properties of the soils.
基金Project supported by the N ational Natural Science Foundation of China.
文摘Different mathematical methods, including linearization, differential, integration and nonlinear least squares approximation (Newton-Marquardt method), were used to fit different kinetic equations, such as zero-order, first-order (i. e, membrane diffusion), second-order, parabolic-diffusion, Elovich, two-constant equations, to the experimental data of Pb2+ and Cu2+ adsorption on variable charge soils and kaolinite. Assuming each M2+ occupied two adsorption sites, two more equations, the so-called surface second-order equation and third-order equation were derived and compared with the above equations according to the fitting results, which showed that the second-order equation and surface second-order equation, being one equation in different expressions under some conditions, were better than the other equations in describing the Pb2+ and Cu2+ adsorption kinetics, and the latter was the best.
文摘Studies were carried out by using electrophoretic method on the effects of the specific adsorption of the anions,such as SO4^2-,PO4^3-,and F^- ions,the cations,such as Ca^2+,Mn^2+,Zn^2+,and Cu^2+,ions,and the anions and cations coexisting,such as Zn^2+ and SO4^2= ions,on electrokinetic properties of the red soils as typical variable charge soils in China concerning variation in the specific ion species and concentrations,with an emphasis on the interaction between soil colloid surfaces and the ions in soil solutions.The results showed that the adsorption of specific ions led to a very pronounced decrease in zeta potentials of the soil colloids and a shift of the IEPs to lower values for specific anions,and an obvious increase in zeta potentials of the soil colloids and a shift of the IEPs to higher values for specific cations.Under circumstances of the specific anions and cations coexisting,for instance,Zn^2+ and SO4^2- ions,the zeta potentials changed with values higher than the value for SO4^2- alone and lower than that for Zn^2+ alone,and the IEP was between that for Zn^2+ and that for SO4^2-.The adsorption of Zn^2+ and Cu^2+ ions resulted in a reversal of the zeta potentials,and appearance of two IEPs for Zn^2+ and no IEP for Cu^2+,exhibiting interesting special effects of these kinds of metal ions.The higher the concentrations of the ions,the greater the change of the electrokinetic properties.
文摘Interactions of potassium and calcium ions with four typical variable charge soils in South China were examined by measuring pK-0.5pCa value with a potassium ion-selective electrode and a calcium ion-selective electrode,and pK value with a potassium ion-selective electrode.The results showed that adsorption of potassium and calcium ions increased with soil suspension pH,and the tendency of the pK-0.5pCa value changing with pH differed with respect to pH range and potassium to calcium ratio.Adsorption of equal amount of calcium and potassium ions led to release of an identical number of protons,suggesting similar adsorption characteristics of these two ions when adsorbed by variable charge soils.Compared with red soil,latosol and lateritic red soil had higher adsorption selectivities for calcium ion.The red soil had a greater affinity for potassium ion than that for calcium ion at low concentration,which seems to result from its possession of 2:1 type minerals,such as vermiculite and mica with a high affinity for potassium ion.The results indicated that adsorption of potassium and calcium ions by the variable charge soils was chiefly caused by the electrostatic attraction between the cations and the soil surfaces.Moreover,it was found that sulfate could affect the adsorption by changing soil surface properties and by forming ion-pair.
基金Project supported by the National Naturai Science Foundation of China
文摘A new technique for studying the adsorption kinetics of heavy metals,Pb^2+ and Cu^2+,on variable charge surfaces was established with two selective electrodes and microcomputer control system.Feasibility of the technique,including interference of other ions (mainly Fe^3+ and Al^3+),response time of electrodes,and the pH range of testing,was studied.Comparision with the most widely used miscible displacement technique,which was considered insufficient in studying 30-minute rapid reactions,at present time showed that the new technique was more advantageous in testing in situ,easy to operate,and economic.
文摘The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron oxides ( Feo ) from the soils with sodium dithionite and acid ammonium oxalate solution respectively. ( 2 ) Add 2% glucose ( on the basis of air-dry soil weight ) to soils and incubate under submerged condition to activate iron oxides, and then the mixtures are dehydrated and air-dried to age iron oxides. ( 3 ) Precipitate various crystalline forms of iron oxides onto kaolinite. The results showed that free iron oxides ( Fed ) were the chief carrier of variable positive charges. Of which crystalline iron oxides ( Fed-Feo ) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges, and did little influence on negative charges. Whereas the amorphous iron oxides ( Feo ) , which presented mainly as a coating with a large specific surface area, not only had positive charges, but also blocked the negative charge sites in soils. Submerged incubation activated iron oxides in the soils, and increased the amount of amorphous iron oxides and the degree of activation of iron oxide, which resulted in the increase of positive and negative charges of soils. Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide, and also led to the decrease of positive and negative charges. Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges. Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges. Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.
文摘The release of hydroxyl ions from two variable charge soils associated with the adsorption of chloride in NaClO4 solutions was examined. The complete release required about 10 minutes. The release decreased with the increase in the NaClO4 concentration at first and eventually was little affected by the latter. The adsorption of Cl- was almost linearly related with the quantity of NaCl added to the system, while the OHrelease-NaCl curve varied with the soil type and the concentration of NaClO4. The logarithm of the quantity of released OH- was linearly related with the pH. The ratio of released OH- to adsorbed Cl- was larger in dilute NaClO4 solutions than in concentrated solutions and decreased with increasing NaCl.
文摘Zn adsorption by pure oxides or in the presence of a high concentration of inner electrolyte has been extensively studied. But, in studies on Zn adsorption in the complicated soil system, especially in variable charge soils, profound knowledge about the adsorption mechanism still lacks. In this paper, taking Zn ion adsorption by two typical variable charge soils as the object of the study, author discusses the relation between Zn adsorption and pH and possible adsorption mechanisms. The results showed that in the low pH range where the amount of Zn adsorbed did not exceed 50% of Zn added, the specific adsorption was the dominant mechanism. The species of Zn specifically adsorbed was free Zn2+ ion. In the middle and high pH ranges, the mechanisms of specific and electrostatic adsorptions, co-existed, accounting for about 70% and 30% , respectively. Noteworthily, in the high pH range, the hydroxyl Zn ion (ZnOH +) from Zn2+ hydrolysis probably was a preferable species for specific adsorption.
文摘The study about the adsorption of phosphate on four variable charge soils and some minerals revealed that two stage adsorption appeared in the adsorption isotherms of phosphate on 4 soils and there was a maximum adsorption on Al-oxide-typed surfaces between pH 3.5 to pH 5.5 as suspension pH changed from 2 to 9, but the adsorption amount of phosphate decreased continually as pH rose on Fe-oxide typed surfaces. The adsorption amount of phosphate and the maximum phosphate adsorption pH decreased in the order of yellow-red soil > lateritic red soil > red soil > paddy soil, which was coincided with the content order of amorphous Al oxide. The removement of organic matter and Fe oxide made the maximum phosphate adsorption pH rise from 4.0 to 5.0 and 4.5, respectively. The desorption curves with pH of four soils showed that phosphate desorbed least at pH 5. Generally the desorption was contrary to the adsorption with pH changing. There was a good accordance between adsorption or desorption and the concentration of Al in the suspension. The possible mechanisms of phosphate adsorption are discussed.
基金Project supported by the Laboratory of Material Cycling in Pedosphere, Academia Sinica.
文摘Cu secondary adsorption by three variable charge soils collected from hubei Province and Hunan Province was investigated.The amount of Cu secondary adsorption increased with that of SO4^2- elementary adsorption and conformed with the Langmuir,freundlich and Temkin isotherms.Desorption of secondary-adsorbed Cu indicated that the hysteresis ratio decreased as Cu secondary adsorption increased,which meant that secondry-adsorbed Cu existed not only in the exchangeable form but also in the bridge form and specifically adsorbed form.The amount of Cu secondary adsorption increased with the temperature.
文摘Some electrochemical properties,such as PH,Eh,and voltammetric behavior,of the decomposition products of rice straw and the in eractions of these products with soils were studied.The PH,Eh,and amounts of organic reducing substances changed markedly during the 60-day anaerobic decomposition.pH decreased sharply to pH 5 on the tenth day and then increased gradually to 7 on the 45th day.The amouats of organic reducing substances increased almost synchronously with the fall of redox potential during the first 15 days.The differential pulse voltammetric(dpv) behavior changed not only in the peak current but also in the peak potential.The fractions with apparent molecular weights lower than 200 dations appeared to be active in dpv behavior.The electric charge of organic reducing substances was closely related to the decomposition stage.The 6th day of incubation was the crucial time before and after which the major part of the components was negatively charged and positively charged, respectively.The group with a low apparent molecular weight and a negative charge was the main components responsible for the lower anodic peak potentials.They were oxidized first during the interactions of the organic reducing substances with soils.
文摘For the purpose of evaluating the role of ligand exchange of sulfate ions in retarding the rate of acidification of variable charge soils, the changes in pH after the addition of different amounts of HNO_3 or H_2SO_4 to representative soils of China were measured. A difrerence between pH changes caused by the two kinds of acids was observed only for variable charge soils and kaolinite, but not for consted charge soils and bentonite. The larger the proportion of H_2SO_4 in the HNO_3-H_2SO_4 mixture, the lower the calculated H ̄+ ion activities remained in the suspension. The difference in H ̄+ ion activities between H_2SO_4 systems and HNO_3 systems was larger for soils with a low base-saturation (BS) percentage than those with a high BS percentage. The removal of free iron oxides from the soil led to a decrease in the difference, while the coating of Fe_2O_3 ona bentonite resulted in a remarkable appearance of the difference. The effect of ligand exchange on the acidity status of the soil varied with the soil type. SurfaCe soils with a hash organic matter content showed a less pronounced effect of ligand exchange than subsoils did. It was estimated that when acid rain chiefly containing H_2SO_4 was deposited on variable charge soils the acidilication rate might be slower by 20%-40% than that when the acid rain chiefly contained HNO_3 for soils with a high organic matter content, and that the rate might be half of that caused by HNO_3 for soils with a low organic matter content, especially for latosols.