In this paper,a new filtering fusion problem is studied for nonlinear cyber-physical systems under errorvariance constraints and denial-of-service attacks.To prevent data collision and reduce communication cost,the st...In this paper,a new filtering fusion problem is studied for nonlinear cyber-physical systems under errorvariance constraints and denial-of-service attacks.To prevent data collision and reduce communication cost,the stochastic communication protocol is adopted in the sensor-to-filter channels to regulate the transmission order of sensors.Each sensor is allowed to enter the network according to the transmission priority decided by a set of independent and identicallydistributed random variables.From the defenders’view,the occurrence of the denial-of-service attack is governed by the randomly Bernoulli-distributed sequence.At the local filtering stage,a set of variance-constrained local filters are designed where the upper bounds(on the filtering error covariances)are first acquired and later minimized by appropriately designing filter parameters.At the fusion stage,all local estimates and error covariances are combined to develop a variance-constrained fusion estimator under the federated fusion rule.Furthermore,the performance of the fusion estimator is examined by studying the boundedness of the fused error covariance.A simulation example is finally presented to demonstrate the effectiveness of the proposed fusion estimator.展开更多
This paper studies the problem of robust controller design for linear perturbed continuous stochasticsystems with variance constraints via output feedback. The goal is to design static output feedback controllers such...This paper studies the problem of robust controller design for linear perturbed continuous stochasticsystems with variance constraints via output feedback. The goal is to design static output feedback controllers suchthat the uncertain system has the desil'ed stability margin and the steady-state variance constraints. The existenceconditions for the desired controllers are discussed, and the analytical expression of these controllers is alsocharacterized. A numerical example is provided to demonstrate the directness and effectiveness of the proposedmethod.展开更多
基金supported in part by the National Natural Science Foundation of China(62173068,61803074,61703245,61973102,U2030205,61903065,61671109,U1830207,U1830133)the China Postdoctoral Science Foundation(2018M643441,2017M623005)+1 种基金the Royal Society of UKthe Alexander von Humboldt Foundation of Germany。
文摘In this paper,a new filtering fusion problem is studied for nonlinear cyber-physical systems under errorvariance constraints and denial-of-service attacks.To prevent data collision and reduce communication cost,the stochastic communication protocol is adopted in the sensor-to-filter channels to regulate the transmission order of sensors.Each sensor is allowed to enter the network according to the transmission priority decided by a set of independent and identicallydistributed random variables.From the defenders’view,the occurrence of the denial-of-service attack is governed by the randomly Bernoulli-distributed sequence.At the local filtering stage,a set of variance-constrained local filters are designed where the upper bounds(on the filtering error covariances)are first acquired and later minimized by appropriately designing filter parameters.At the fusion stage,all local estimates and error covariances are combined to develop a variance-constrained fusion estimator under the federated fusion rule.Furthermore,the performance of the fusion estimator is examined by studying the boundedness of the fused error covariance.A simulation example is finally presented to demonstrate the effectiveness of the proposed fusion estimator.
文摘This paper studies the problem of robust controller design for linear perturbed continuous stochasticsystems with variance constraints via output feedback. The goal is to design static output feedback controllers suchthat the uncertain system has the desil'ed stability margin and the steady-state variance constraints. The existenceconditions for the desired controllers are discussed, and the analytical expression of these controllers is alsocharacterized. A numerical example is provided to demonstrate the directness and effectiveness of the proposedmethod.