期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Structural Dynamic Optimization for Flexible Beam of Helicopter Rotor Based on GA
1
作者 GAO Yadong PI Runge HUANG Dawei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第6期721-734,共14页
As one of the most important steps in the design of bearing-less rotor systems,the design of flexible beam has received much research attention.Because of the very complex working environment of helicopter,the flexibl... As one of the most important steps in the design of bearing-less rotor systems,the design of flexible beam has received much research attention.Because of the very complex working environment of helicopter,the flexible beam should satisfy both the strength and dynamic requirements.However,traditional optimization research focused only on either the strength or dynamical characteristics.To sufficiently improve the performance of the flexible beam,both aspects must be considered.This paper proposes a two-stage optimization method based on the Hamilton variational principle:Variational asymptotic beam section analysis(VABS)program and genetic algorithm(GA).Consequently,a two-part analysis model based on the Hamilton variational principle and VABS is established to calculate section characteristics and structural dynamics characteristics,respectively.Subsequently,the two parts are combined to establish a two-stage optimization process and search with GA to obtain the best dynamic characteristics combinations.Based on the primary optimization results,the section characteristics of the flexible beam are further optimized using GA.The optimization results show that the torsional stiffness decreases by 36.1%compared with the full 0°laying scheme without optimization and the dynamic requirements are achieved.The natural frequencies of flapping and torsion meet the requirements(0.5 away from the passing frequencies of the blade,0.25 away from the excitation force frequency,and the flapping and torsion frequencies keep a corresponding distance).The results indicate that the optimization method can significantly improve the performance of the flexible beam. 展开更多
关键词 bearing-less rotor system flexible beam dynamic optimization Hamilton variational principle variational asymptopic beam section analysis genetic algorithm(GA)
下载PDF
Aeroelastic Responses for Wind Turbine Blade Considering Bend-Twist Coupled Effect
2
作者 Li Yijin Wang Tongguang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期16-25,共10页
The Euler-Bernoulli beam model coupled with the sectional properties obtained by the variational asymptotic beam sectional analysis(VABS)method is used to construct the blade structure model.Combined the aerodynamic l... The Euler-Bernoulli beam model coupled with the sectional properties obtained by the variational asymptotic beam sectional analysis(VABS)method is used to construct the blade structure model.Combined the aerodynamic loads calculated by unsteady blade element momentum model with a dynamic inflow and the dynamic stall correction,the dynamics equations of blade are built.The Newmark implicit algorithm is used to solve the dynamics equations.Results of the sectional properties and blade structure model are compared with the multi-cell beam method and the ANSYS using shell elements.It is proved that the method is effective with high precision.Moreover,the effects on the aeroelastic response caused by bend-twist coupling are analyzed.Torsional direction is deflected toward the upwind direction as a result of coupling effects.The aerodynamic loads and the displacement are reduced. 展开更多
关键词 variational asymptotic beam sectional analysis (VABS) wind turbine unsteady blade element momen turn theory dynamic stall aeroelastic responses
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部