Some of the variation formulas of a metric were derived in the literatures by using the local coordinates system, In this paper, We give the first and the second variation formulas of the Riemannian curvature tensor, ...Some of the variation formulas of a metric were derived in the literatures by using the local coordinates system, In this paper, We give the first and the second variation formulas of the Riemannian curvature tensor, Ricci curvature tensor and scalar curvature of a metric by using the moving frame method. We establish a relation between the variation of the volume of a metric and that of a submanifold. We find that the latter is a consequence of the former. Finally we give an application of these formulas to the variations of heat invariants. We prove that a conformally flat metric g is a critical point of the third heat invariant functional for a compact 4-dimensional manifold M, then (M, g) is either scalar flat or a space form.展开更多
The main purpose of this paper is to establish the Ekeland’s variational principle andCaristi’s fixed point theorem in probabilistic metric spaces and to give a direct simple proofof the equivalence between these tw...The main purpose of this paper is to establish the Ekeland’s variational principle andCaristi’s fixed point theorem in probabilistic metric spaces and to give a direct simple proofof the equivalence between these two theorems in the probabilistic metric space. The resultspresented in this paper generalize the corresponding results of [9--12].展开更多
In this paper we study the connection between the metric projection operator PK : B →K, where B is a reflexive Banach space with dual space B^* and K is a non-empty closed convex subset of B, and the generalized pr...In this paper we study the connection between the metric projection operator PK : B →K, where B is a reflexive Banach space with dual space B^* and K is a non-empty closed convex subset of B, and the generalized projection operators ∏K : B → K and πK : B^* → K. We also present some results in non-reflexive Banach spaces.展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 10571088)
文摘Some of the variation formulas of a metric were derived in the literatures by using the local coordinates system, In this paper, We give the first and the second variation formulas of the Riemannian curvature tensor, Ricci curvature tensor and scalar curvature of a metric by using the moving frame method. We establish a relation between the variation of the volume of a metric and that of a submanifold. We find that the latter is a consequence of the former. Finally we give an application of these formulas to the variations of heat invariants. We prove that a conformally flat metric g is a critical point of the third heat invariant functional for a compact 4-dimensional manifold M, then (M, g) is either scalar flat or a space form.
基金The project is supported by National Natural Science Foundation of China
文摘The main purpose of this paper is to establish the Ekeland’s variational principle andCaristi’s fixed point theorem in probabilistic metric spaces and to give a direct simple proofof the equivalence between these two theorems in the probabilistic metric space. The resultspresented in this paper generalize the corresponding results of [9--12].
文摘In this paper we study the connection between the metric projection operator PK : B →K, where B is a reflexive Banach space with dual space B^* and K is a non-empty closed convex subset of B, and the generalized projection operators ∏K : B → K and πK : B^* → K. We also present some results in non-reflexive Banach spaces.