期刊文献+
共找到1,246篇文章
< 1 2 63 >
每页显示 20 50 100
Revisiting East Asian monsoon change during the Last Glacial Maximum using PMIP4 simulations
1
作者 Zhiping Tian 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第3期47-52,共6页
利用PMIP4多模式试验数据,本文重新检查了末次冰盛期(距今约21000年)东亚季风变化.结果表明:相对于工业革命前期,所有5个模式一致模拟显示末次冰盛期东亚季风减弱,冬季和夏季减幅分别为1%-18%和2-32%;不同模式中东亚季风环流变化的空间... 利用PMIP4多模式试验数据,本文重新检查了末次冰盛期(距今约21000年)东亚季风变化.结果表明:相对于工业革命前期,所有5个模式一致模拟显示末次冰盛期东亚季风减弱,冬季和夏季减幅分别为1%-18%和2-32%;不同模式中东亚季风环流变化的空间分布存在差异,这主要源于该时期大尺度变冷和海平面气压梯度变化的空间分布不同;由于模式之间的差异和重建记录之间的不确定性,未来有待开展更多模拟和重建工作以更好地理解冰期东亚季风变化. 展开更多
关键词 末次冰盛期 东亚冬季风 东亚夏季风 PMIP4试验
下载PDF
Characteristics and Variations of the East Asian Monsoon System and Its Impacts on Climate Disasters in China 被引量:81
2
作者 黄荣辉 陈际龙 黄刚 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第6期993-1023,共31页
Recent advances in studies of the structural characteristics and temporal-spatial variations of the East Asian monsoon (EAM) system and the impact of this system on severe climate disasters in China are reviewed. Pr... Recent advances in studies of the structural characteristics and temporal-spatial variations of the East Asian monsoon (EAM) system and the impact of this system on severe climate disasters in China are reviewed. Previous studies have improved our understanding of the basic characteristics of horizontal and vertical structures and the annual cycle of the EAM system and the water vapor transports in the EAM region. Many studies have shown that the EAM system is a relatively independent subsystem of the Asian- Australian monsoon system, and that there exists an obvious quasi-biennial oscillation with a meridional tripole pattern distribution in the interannual variations of the EAM system. Further analyses of the basic physical processes, both internal and external, that influence the variability of the EAM system indicate that the EAM system may be viewed as an atmosphere-ocean-land coupled system, referred to the EAM climate system in this paper. Further, the paper discusses how the interaction and relationships among various components of this system can be described through the East Asia Pacific (EAP) teleconnection pattern and the teleconnection pattern of meridional upper-tropospheric wind anomalies along the westerly jet over East Asia. Such reasoning suggests that the occurrence of severe floods in the Yangtze and Hualhe River valleys and prolonged droughts in North China are linked, respectively~ to the background interannual and interdecadal variability of the EAM climate system. Besides, outstanding scientific issues related to the EAM system and its impact on climate disasters in China are also discussed. 展开更多
关键词 east asian monsoon system climate disaster persistent drought severe flood EAP pattern teleconnection
下载PDF
Evaluation of the interannual variability in the East Asian summer monsoon in AMIP and historical experiments of CAS FGOALS-f3-L
3
作者 Xiaoqi Zhang Bian He +2 位作者 Qing Bao Yimin Liu Guoxiong Wu 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第1期14-21,共8页
对东亚夏季季风(EASM)模拟的评估可以提高我们对亚洲季风动力和气候模拟的理解.在这项研究中,通过使用中国科学院(CAS)全球海洋-大气-陆地系统(FGOALS-f3-L)模式参加的第六次耦合模式相互比较计划(CMIP6)中的大气模式相互比较计划(AMIP... 对东亚夏季季风(EASM)模拟的评估可以提高我们对亚洲季风动力和气候模拟的理解.在这项研究中,通过使用中国科学院(CAS)全球海洋-大气-陆地系统(FGOALS-f3-L)模式参加的第六次耦合模式相互比较计划(CMIP6)中的大气模式相互比较计划(AMIP)和历史(historical)试验,明确了EASM的年际变率的模拟能力.通过多变量经验正交函数(MV-EOF)分析发现,观测的EASM的主导模态为西太平洋上的太平洋-日本模态,并伴有局部反气旋异常.主导模态的方差贡献率为24.6%.历史(historical)试验可以基本再现这种空间模态,其方差贡献率较AMIP试验更接近于观测.与AMIP试验相比,历史(historical)试验还能更好地模拟EASM变率的时间频率.然而,由于历史(historical)模拟没有在积分开始时应用初始化过程,而AMIP试验受到海表面温度(SST)的约束,因此主成分(PC1)的位相在历史(historical)试验中没有得到较好地再现.进一步分析发现,印度洋和西太平洋热带地区的海气相互作用对EASM的模拟非常重要,而EASM气候变率的模拟可能与厄尔尼诺-南方涛动(ENSO)的模拟能力有关,这值得进一步分析. 展开更多
关键词 东亚夏季季风 年际变化 CMIP6 模式评估 FGOALS-f3-L
下载PDF
Plastid phylogenomics provides new insights into the systematics,diversification,and biogeography of Cymbidium(Orchidaceae) 被引量:1
4
作者 Hai-Yao Chen Zhi-Rong Zhang +7 位作者 Xin Yao Ji-Dong Ya Xiao-Hua Jin Lin Wang Lu Lu De-Zhu Li Jun-Bo Yang Wen-Bin Yu 《Plant Diversity》 SCIE CAS CSCD 2024年第4期448-461,共14页
Cymbidium(Orchidaceae:Epidendroideae),with around 60 species,is widely-distributed across Southeast Asia,providing a nice system for studying the processes that underlie patterns of biodiversity in the region.However,... Cymbidium(Orchidaceae:Epidendroideae),with around 60 species,is widely-distributed across Southeast Asia,providing a nice system for studying the processes that underlie patterns of biodiversity in the region.However,phylogenetic relationships of Cymbidium have not been well resolved,hampering investigations of species diversification and the biogeographical history of this genus.In this study,we construct a plastome phylogeny of 56 Cymbidium species,with four well-resolved major clades,which provides a framework for biogeographical and diversification rate analyses.Molecular dating and biogeographical analyses show that Cymbidium likely originated in the region spanning northern IndoBurma to the eastern Himalayas during the early Miocene(~21.10 Ma).It then rapidly diversified into four major clades in East Asia within approximately a million years during the middle Miocene.Cymbidium spp.migration to the adjacent regions(Borneo,Philippines,and Sulawesi)primarily occurred during the Pliocene-Pleistocene period.Our analyses indicate that the net diversification rate of Cymbidium has decreased since its origin,and is positively associated with changes in temperature and monsoon intensity.Favorable hydrothermal conditions brought by monsoon intensification in the early Miocene possibly contributed to the initial rapid diversification,after which the net diversification rate was reduced with the cooling climate after the middle Miocene.The transition from epiphytic to terrestrial habits may have enabled adaptation to cooler environments and colonization of northern niches,yet without a significant effect on diversification rates.This study provides new insights into how monsoon activity and temperature changes affected the diversification dynamics of plants in Southeast Asia. 展开更多
关键词 CYMBIDIUM east Asia asian monsoons Climate change Biogeographical patterns
下载PDF
Characteristics,Processes,and Causes of the Spatio-temporal Variabilities of the East Asian Monsoon System 被引量:74
5
作者 黄荣辉 陈际龙 +1 位作者 王林 林中达 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第5期910-942,共33页
Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has ... Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has improved in many aspects: the basic characteristics of horizontal and vertical structures, the annual cycle of the East Asian summer monsoon (EASM) system and the East Asian winter monsoon (EAWM) system, the characteristics of the spatio-temporal variabilities of the EASM system and the EAWM system, and especially the multiple modes of the EAM system and their spatio-temporal variabilities. Some new results have also been achieved in understanding the atmosphere-ocean interaction and atmosphere-land interaction processes that affect the variability of the EAM system. Based on recent studies, the EAM system can be seen as more than a circulation system, it can be viewed as an atmosphere-ocean-land coupled system, namely, the EAM climate system. In addition, further progress has been made in diagnosing the internal physical mechanisms of EAM climate system variability, especially regarding the characteristics and properties of the East Asia-Pacific (EAP) teleconnection over East Asia and the North Pacific, the "Silk Road" teleconnection along the westerly jet stream in the upper troposphere over the Asian continent, and the dynamical effects of quasi-stationary planetary wave activity on EAM system variability. At the end of the paper, some scientific problems regarding understanding the EAM system variability are proposed for further study. 展开更多
关键词 east asian monsoon system spatio-temporal variations climate system EAP teleconnection
下载PDF
An Index Measuring the Interannual Variation of the East Asian Summer Monsoon-The EAP Index 被引量:76
6
作者 黄刚 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第1期41-52,共12页
Based on the EAP (East Asia/Pacific) teleconnection in the summer circulation anomalies over the Northern Hemisphere, an index measuring the strength of the East Asian summer monsoon, i.e., the so-called EAP index, is... Based on the EAP (East Asia/Pacific) teleconnection in the summer circulation anomalies over the Northern Hemisphere, an index measuring the strength of the East Asian summer monsoon, i.e., the so-called EAP index, is defined in this paper. From the analyses of observed data, it is clearly shown that the EAP index defined in this study can well describe the interannual variability of summer rainfall and surface air temperature in East Asia, especially in the Yangtze River valley and the Huaihe River valley, Korea, and Japan. Moreover, this index can also reflect the interannual variability of the East Asian summer monsoon system including the monsoon horizontal circulation and the vertical-meridional circulation cell over East Asia. From the composite analyses of climate and monsoon circulation anomalies for high EAP index and for low EAP index, respectively, it is well demonstrated that the EAP index proposed in this study can well measure the strength of the East Asian summer monsoon. 展开更多
关键词 east Asia/Pacific index east asian summer monsoon interannual variability
下载PDF
Interannual to Interdecadal Variation of East Asian Summer Monsoon and its Association with the Global Atmospheric Circulation and Sea Surface Temperature 被引量:11
7
作者 薛峰 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第4期567-575,共9页
The East Asian summer monsoon (EASM) underwent an interdecadal variation with interannual variations during the period from 1958 to 1997, its index tended to decline from a higher stage in the mid-1960,s until it rea... The East Asian summer monsoon (EASM) underwent an interdecadal variation with interannual variations during the period from 1958 to 1997, its index tended to decline from a higher stage in the mid-1960,s until it reached a lower stage after 1980/s. Correlation analysis reveals that EASM is closely related with the global atmospheric circulation and sea surface temperature (SST). The differences between the weak and strong stage of EASM shows that, the summer monsoon circulation over East Asia and North Africa is sharply weakened, in the meantime, the westerlies in high latitudes and the trade-wind over the tropical ocean are also changed significantly. Over the most regions south of the northern subtropics, both air temperature in the lower troposphere and SST tended to rise compared with the strong stage of EASM. It is also revealed that the ocean-atmosphere interaction over the western Pacific and Indian Ocean plays a key role in interannual to interdecadal variation of EASM, most probably, the subtropical indian Ocean is more important. On the other hand, the ENSO event is less related to EASM at least during the concerned period. 展开更多
关键词 east asian summer monsoon Inerannual to interdecadal variation the global atmospheric circulation Sea surface temperature
下载PDF
Simulating the Intraseasonal Variation of the East Asian Summer Monsoon by IAP AGCM4.0 被引量:9
8
作者 SU Tonghua XUE Feng ZHANG He 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第3期570-580,共11页
ABSTRACT This study focuses on the intraseasonal variation of the East Asian summer monsoon (EASM) simulated by IAP AGCM 4.0, the fourth-generation atmospheric general circulation model recently developed at the In... ABSTRACT This study focuses on the intraseasonal variation of the East Asian summer monsoon (EASM) simulated by IAP AGCM 4.0, the fourth-generation atmospheric general circulation model recently developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences. In general, the model simulates the intraseasonal evolution of the EASM and the related rain belt. Besides, the model also simulates the two northward jumps of the westem Pacific subtropical high (WPSH), which are closely related to the convective activities in the warm pool region and Rossby wave activities in high latitudes. Nevertheless, some evident biases in the model were found to exist. Due to a stronger WPSH, the model fails to simulate the rain belt in southern China during May and June. Besides, the model simulates a later retreat of the EASM, which is attributed to the overestimated land-sea thermal contrast in August. In particular, the timing of the two northward jumps of the WPSH in the model is not coincident with the observation, with a later jump by two pentads for the first jump and an earlier jump by one pentad for the second, i.e., the interval between the two jumps is shorter than the observation. This bias is mainly ascribed to a shorter oscillating periodicity of convection in the tropical northwestern Pacific. 展开更多
关键词 east asian summer monsoon western Pacific subtropical high northward jump IAP AGCM4
下载PDF
Low- and Mid-High Latitude Components of the East Asian Winter Monsoon and Their Reflecting Variations in Winter Climate over Eastern China 被引量:21
9
作者 LIU Ge JI Li-Ren +1 位作者 SUN Shu-Qing XIN Yu-Fei 《Atmospheric and Oceanic Science Letters》 2012年第3期195-200,共6页
The present study defines a low-latitude component (regionally averaged winter 1000-hPa V-winds over 10 25°N, 105 135°E) and a mid-high-latitude component (regionally averaged winter 1000-hPa V-winds over 30... The present study defines a low-latitude component (regionally averaged winter 1000-hPa V-winds over 10 25°N, 105 135°E) and a mid-high-latitude component (regionally averaged winter 1000-hPa V-winds over 30 50°N, 110 125°E) of the East Asian winter monsoon (EAWM), which are denoted as EAWM-L and EAWM-M, respectively. The study examines the variation characteristics, reflecting variations in winter climate over eastern China, and associated atmospheric circulations corresponding to the two components. The main results are as follows: 1) the EAWM-L and EAWM-M have consistent variation in some years but opposite variations in other years; 2) the EAWM-M index mainly reflects the extensive temperature variability over eastern China, while the EAWM-L index better reflects the variation in winter precipitation over most parts of eastern China; and 3) corresponding to the variation in the EAWM-M index, anomalous winds over the mid-high latitudes of East Asia modulate the southward invasion of cold air from the high latitudes and accordingly affect temperatures over eastern China. In combination with the variation in the EAWM-L index, anomalous low-latitudinal winds regulate the water vapor transport from tropical oceans to eastern China, resulting in anomalous winter precipitation. These pronounced differences between the EAWM-L and the EAWM-M suggest that it is necessary to explore the monsoons' individual features and effects in the EAWM study. 展开更多
关键词 east asian winter monsoon TEMPERATURE PRECIPITATION eastern China
下载PDF
Phase Transition of the Pacific Decadal Oscillation and Decadal Variation of the East Asian Summer Monsoon in the 20th Century 被引量:7
10
作者 Xiao DONG Feng XUE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第3期330-338,共9页
This paper focuses on the relationship between the phase transition of the Pacific decadal oscillation (PDO) and decadal variation of the East Asian summer monsoon (EASM) in the twentieth century. The first transi... This paper focuses on the relationship between the phase transition of the Pacific decadal oscillation (PDO) and decadal variation of the East Asian summer monsoon (EASM) in the twentieth century. The first transition occurred in the 1940s, with an enhanced SST in the North Pacific and reduced SST in the tropical eastern Pacific and South Indian Ocean. In agreement with these SST changes, a higher SLP was found in most parts of the Pacific, while a lower SLP was found in the North Pacific and most parts of the Indian Ocean. In this case, the EASM was largely enhanced with a southerly anomaly in the lower troposphere along the east coast of China. Correspondingly, there was less rainfall in the Yangtze River valley and more rainfall in northern and southern China. An opposite change was found when the PDO reversed its phase in the late 1970s. In the tropical Indian Ocean and western Pacific, however, the SST was enhanced in both the 1940s and 1970s. As a result, the western Pacific subtropical high (WPSH) tended to extend westward with a larger magnitude in the 1970s. The major features were reasonably reproduced by an atmospheric general circulation model (IAP AGCM4.0) prescribed with observed SST and sea ice. On the other hand, the westward extension of the WPSH was exaggerated in the 1970s, while it was underestimated in the 1940s. Besides, the spatial pattern of the simulated summer rainfall in eastern China tended to shift southward compared with the observation. 展开更多
关键词 Pacific decadal oscillation east asian summer monsoon western Pacific subtropical high IAP AGCM4.0
下载PDF
Intraseasonal variation of the East Asian summer monsoon in La Ni?a years 被引量:7
11
作者 XUE Feng ZHAO Jun-Jie 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第2期156-167,共12页
Based on the composite result of six major the intraseasonal variation of the East Asian La Nina events during 1979-2012, the authors reveal summer monsoon (EASM) and summer rainfall in East Asia in La Nino years. D... Based on the composite result of six major the intraseasonal variation of the East Asian La Nina events during 1979-2012, the authors reveal summer monsoon (EASM) and summer rainfall in East Asia in La Nino years. Due to a higher SST over the western Pacific warm pool in the proceeding winter and spring, warm pool convection in summer is enhanced, leading to a cyclonic anomaly in the subtropical western Pacific. As a result, the western Pacific subtropical high is located more northeastward, and the seasonal march in East Asia is thus accelerated.This anomalous pattern tends to change with the seasonal march, with a maximum anomaly in July. Besides, there is less Mei-yu rainfall in the Yangtze River basin, with an earlier start and termination. The rainfall distribution in East Asia during La Nino years is characterized bya zonal pattern of less rainfall in eastern China and more rainfall over the oceanic region of the western Pacific. By comparison, a meridional pattern is found during El Nino years, with less rainfall in the tropics and more rainfall in the subtropics and midlatitudes. Therefore, the influence of La Nino on the EASM cannot be simply attributed to an antisymmetric influence of El Nino. 展开更多
关键词 La Nina east asian summer monsoon intraseasonal variation western Pacific subtropical high
下载PDF
Variations in the annual cycle of the East Asian monsoon and its phase-induced interseasonal rainfall anomalies in China 被引量:3
12
作者 JIANG Song ZHU Congwen JIANG Ning 《Atmospheric and Oceanic Science Letters》 CSCD 2020年第4期316-322,共7页
The East Asian monsoon(EAM)exhibits a robust annual cycle with significant interannual variability.Here,the authors find that the EAM annual cycle can be decomposed into the equinoctial and solstitial modes in the com... The East Asian monsoon(EAM)exhibits a robust annual cycle with significant interannual variability.Here,the authors find that the EAM annual cycle can be decomposed into the equinoctial and solstitial modes in the combined sea level pressure,850-hPa low-level wind,and rainfall fields.The solstitial mode shows a zonal pressure contrast between the continental thermal low and the western Pacific subtropical high,reaching its peak in July and dominating the East Asian summer monsoon.The equinoctial mode shows an approximate zonal contrast between the low-level cyclone over the east of the Tibetan Plateau and the western Pacific anticyclone over the east of the Philippines.It prevails during the spring rainy season in South China and reaches its peak in April.The interannual variations of the lead–lag phase of the two modes may result in the negative correlation of rainfall anomalies in North China between spring and fall and in South China between winter and summer,which provides a potential basis for the across-seasonal prediction of rainfall.The warm phase of ENSO in winter could give rise to the reverse interseasonal rainfall anomalies in South China,while the SST anomaly in the Northwest Pacific Ocean may regulate the rainfall anomaly in North China. 展开更多
关键词 Annual cycle east asian monsoon interannual variability
下载PDF
Mechanism of Regional Subseasonal Precipitation in the Strongest and Weakest East Asian Summer Monsoon Subseasonal Variation Years 被引量:2
13
作者 HU Haibo DENG Yuheng +1 位作者 FANG Jiabei WANG Rongrong 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第6期1411-1427,共17页
Using the National Center for Environment Prediction Climate Forecast System Reanalysis coupled dataset during 1979–2010,we selected four subseasonal indexes from the 16 East Asian Summer Monsoon(EASM)indexes to char... Using the National Center for Environment Prediction Climate Forecast System Reanalysis coupled dataset during 1979–2010,we selected four subseasonal indexes from the 16 East Asian Summer Monsoon(EASM)indexes to characterize the subseasonal variability of the entire EASM system.The strongest(1996)and weakest(1998)years of the subseasonal variation were revealed based on these subseasonal EASM indexes.Furthermore,three rainfall concentration areas were defined in East Asia,and these areas were dissected by the atmospheric midlatitude jet stream axis and the position of the Western North Pacific Subtropical High(WNPSH).Then,the subseasonal effects of the WNPSH,the South Asian High(SAH),the Mongolian Cyclone(MC),and the Boreal Summer Intraseasonal Oscillation(BSISO)on each rainfall concentration area were studied in the strongest and weakest subseasonal variation years of the EASM.During the summer of 1998,the WNPSH and the SAH were stable in the more southern region,which not only blocked the northward progression of the BSISO but also caused the MC to advance southward.Therefore,the summer of 1998 was the weakest subseasonal variability of the EASM,but with significant subseasonal precipitation episodes in the northern and central rainfall areas.However,in 1996,the BSISO repeatedly spread northward in the south rainfall area because of the weak intensities and northern positions of the WNPSH and the SAH,which caused significant subseasonal precipitation episodes.In addition,MC was blocked to the north of approximately 42°N with a weak subseasonal rainfall. 展开更多
关键词 east asian Summer monsoon Subseasonal Western North Pacific Subtropical High Mongolian Cyclone Boreal Summer Intraseasonal Oscillation
下载PDF
Variation of East Asian Summer Monsoon and Its Relationship with Precipitation of China in Recent 111 Years 被引量:8
14
作者 杨浩 智协飞 +1 位作者 高洁 刘樱 《Agricultural Science & Technology》 CAS 2011年第11期1711-1716,共6页
Based on the monthly average SLP data in the northern hemisphere from 1899 to 2009, East Asian summer monsoon intensity index in recent 111 years was calculated, and the interdecadal and interannual variation characte... Based on the monthly average SLP data in the northern hemisphere from 1899 to 2009, East Asian summer monsoon intensity index in recent 111 years was calculated, and the interdecadal and interannual variation characteristics of East Asian summer monsoon were analyzed. The results showed that East Asian summer monsoon in the 1920s was the strongest. The intensity of East Asian summer monsoon after the middle period of the 1980s presented weakened trend. It was the weakest in the early 21st century. Morlet wavelet analysis found that the interdecadal and interannual variations of East Asian summer monsoon had quasi-10-year and quasi-2-year significance periods. The interannual variation of precipitation in the east of China closely related to intensity variation of East Asian summer monsoon. In strong (weak) East Asian summer monsoon year, the rainfall in the middle and low reaches of Yangtze River was less (more) than that in common year, while the rainfall in North China was more (less) than that in common year. The weakening of East Asian summer monsoon was an important reason for that it was rainless (drought) in North China and rainy (flood) in the middle and low reaches of the Yangtze River after the middle period of the 1980s. 展开更多
关键词 east asian summer monsoon variation Precipitation of China
下载PDF
Recent Advances in Understanding Multi-scale Climate Variability of the Asian Monsoon 被引量:1
15
作者 Wen CHEN Renhe ZHANG +12 位作者 Renguang WU Zhiping WEN Liantong ZHOU Lin WANG Peng HU Tianjiao MA Jinling PIAO Lei SONG Zhibiao WANG Juncong LI Hainan GONG Jingliang HUANGFU Yong LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第8期1429-1456,共28页
Studies of the multi-scale climate variability of the Asian monsoon are essential to an advanced understanding of the physical processes of the global climate system.In this paper,the progress achieved in this field i... Studies of the multi-scale climate variability of the Asian monsoon are essential to an advanced understanding of the physical processes of the global climate system.In this paper,the progress achieved in this field is systematically reviewed,with a focus on the past several years.The achievements are summarized into the following topics:(1)the onset of the South China Sea summer monsoon;(2)the East Asian summer monsoon;(3)the East Asian winter monsoon;and(4)the Indian summer monsoon.Specifically,new results are highlighted,including the advanced or delayed local monsoon onset tending to be synchronized over the Arabian Sea,Bay of Bengal,Indochina Peninsula,and South China Sea;the basic features of the record-breaking mei-yu in 2020,which have been extensively investigated with an emphasis on the role of multi-scale processes;the recovery of the East Asian winter monsoon intensity after the early 2000s in the presence of continuing greenhouse gas emissions,which is believed to have been dominated by internal climate variability(mostly the Arctic Oscillation);and the accelerated warming over South Asia,which exceeded the tropical Indian Ocean warming,is considered to be the main driver of the Indian summer monsoon rainfall recovery since 1999.A brief summary is provided in the final section along with some further discussion on future research directions regarding our understanding of the Asian monsoon variability. 展开更多
关键词 asian monsoon multi-scale climate variability monsoon onset east asian summer monsoon east asian winter monsoon Indian summer monsoon
下载PDF
Role of tropical cyclones over the western North Pacific in the East Asian summer monsoon system
16
作者 Xian Chen Zhong Zhong +3 位作者 YiJia Hu Shi Zhong Wei Lu Jing Jiang 《Earth and Planetary Physics》 CSCD 2019年第2期147-156,共10页
Precipitation observations collected at weather stations in eastern China, the NCEP/NCAR reanalysis data, the tropical cyclone(TC) Best Track Dataset, and a sensitivity numerical experiment were used in the present st... Precipitation observations collected at weather stations in eastern China, the NCEP/NCAR reanalysis data, the tropical cyclone(TC) Best Track Dataset, and a sensitivity numerical experiment were used in the present study to investigate the role in the East Asian summer monsoon(EASM) system played by frequent TC activities over the western North Pacific(WNP). Results indicated that, in active TC years, the EASM is stronger and the southerly winds in the lower troposphere advance farther north and reach higher latitudes.Meanwhile, the monsoon rain belt remains in the lower and middle reaches of the Yangtze River valley for a relatively short period,leading to less precipitation there. Both the western Pacific subtropical high and the South Asian high weaken with the northward shift of the ridgelines for both high-pressure systems as well as the East Asian subtropical upper-level jet. Therefore, the impacts of frequent TC activities over the WNP on each individual component of the EASM are in phase with those of the stronger EASM itself, amplifying features of the already strengthened EASM. 展开更多
关键词 east asian summer monsoon TROPICAL CYCLONE western North PACIFIC
下载PDF
Future Changes in the Relationship Between the South and East Asian Summer Monsoons in CMIP6 Models 被引量:1
17
作者 陈虹静 杨崧 魏维 《Journal of Tropical Meteorology》 SCIE 2023年第2期191-203,共13页
The future changes in the relationship between the South Asian summer monsoon(SASM)and the East Asian summer monsoon(EASM)are investigated by using the high-emissions Shared Socioeconomic Pathway 5-8.5(SSP5-8.5)experi... The future changes in the relationship between the South Asian summer monsoon(SASM)and the East Asian summer monsoon(EASM)are investigated by using the high-emissions Shared Socioeconomic Pathway 5-8.5(SSP5-8.5)experiments from 26 coupled models that participated in the phase 6 of the Coupled Model Intercomparison Project(CMIP6).Six models,selected based on their best performance in simulating the upper-and lower-level pathways related to the SASM-EASM teleconnection in the historical run,can capture the positive relationship between the SASM and the rainfall over northern China.In the future scenario,the upper-level teleconnection wave pattern connecting the SASM and the EASM exhibits a significant weakening trend,due to the rainfall anomalies decrease over the northern Indian Peninsula in the future.At the lower level,the western North Pacific anticyclone is projected to strengthen in the warming climate.The positive(negative)rainfall anomalies associated with positive(negative)SASM rainfall anomalies are anticipated to extend southward from northern China to the Yangtze-Huai River valley,the Korea Peninsula,and southern Japan.The connection in the lower-level pathway may be strengthened in the future. 展开更多
关键词 CMIP6 global warming South asian monsoon east asian monsoon future projection
下载PDF
The climatology and interannual variability of the East Asian summer monsoonsimulated by a weakly coupled data assimilation system
18
作者 LIN Renping ZHENG Fei DONG Xiao 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第2期140-146,共7页
With the motivation to improve the simulation of the East Asian summer monsoon(EASM) in coupled climate models, oceanic data assimilation(DA) was used in CAS-ESM-C(Chinese Academy of Sciences–Earth System Model–Clim... With the motivation to improve the simulation of the East Asian summer monsoon(EASM) in coupled climate models, oceanic data assimilation(DA) was used in CAS-ESM-C(Chinese Academy of Sciences–Earth System Model–Climate Component) in this study. Observed sea surface temperature was assimilated into CAS-ESM-C. The climatology and interannual variability of the EASM simulated in CAS-ESM-C with DA were compared with a traditional AMIP-type run.Results showed that the climatological spatial pattern and annual cycle of precipitation in the western North Paci?c, and the ENSO-related and EASM-related EASM circulation and precipitation, were largely improved. As shown in this study, air–sea coupling is important for EASM simulation. In addition, oceanic DA synchronizes the coupled model with the real world without breaking the air–sea coupling process. These two successful factors make the assimilation experiment a more reasonable experimental design than traditional AMIP-type simulations. 展开更多
关键词 Ocean data assimilation coupled model east asian summer monsoon AMIP
下载PDF
Improved simulation of the East Asian winter monsoon interannual variation by IAP/LASG AGCMs
19
作者 JIN Chen-Xi ZHOU Tian-Jun +2 位作者 GUO Zhun WU Bo CHEN Xiao-Long 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第3期204-210,共7页
The simulation of the East Asian winter monsoon (EAWM) has been a challenge for climate models. In this study, the performances of two versions of the AGCM developed at the lAP, versions 1 and 2 of the Grid-point At... The simulation of the East Asian winter monsoon (EAWM) has been a challenge for climate models. In this study, the performances of two versions of the AGCM developed at the lAP, versions 1 and 2 of the Grid-point Atmospheric Model of the IAP/LASG (GAMIL1 and GAMIL2), are evaluated in the context of mean state and interannual variation. Significant improvements are shown for GAMIL2 in comparison to GAMIL1. The simulated interannual variability of the EAWM, measured by the regional average of 1000 hPa meridional wind over East Asia, has evidently improved; the correlation coefficient with reanalysis data changes from 0.37 in GAMIL1 to 0.71 in GAMIL2. The associated interannual precipitation anomalies are also improved, in terms of both spatial pattern and magnitude. Analysis demonstrates that the improvements result from the better simulation of the El Nino-related Philippine Sea anticyclone (PSAC) in GAMIL2. The improved moist processes, including the stratiform condensation and evaporation in GAMIL2, lead to a reasonable atmospheric heating associated with El Nitro in the tropical Pacific, which further drives the PSAC as a Rossby- wave response. 展开更多
关键词 east asian winter monsoon El Nino Grid-point Atmospheric Model of the IAP/LASG Philippine Seaanticyclone atmosphericheating
下载PDF
NUMERICAL SIMULATION OF THE INFLUENCE OF INDIAN OCEAN DIPOLE ON CLIMATIC VARIATIONS OVER EAST ASIAN MONSOON REGION DURING EQUATORIAL EAST PACIFIC OCEAN SSTA
20
作者 闫晓勇 张铭 《Journal of Tropical Meteorology》 SCIE 2005年第1期60-67,共8页
This paper investigates the influence of Indian Ocean Dipole (IOD) on climatic variations over East Asian monsoon region, based on CAS IAP AGCM-Ⅱduring Equatorial East Pacific Ocean SSTA or not. The results show that... This paper investigates the influence of Indian Ocean Dipole (IOD) on climatic variations over East Asian monsoon region, based on CAS IAP AGCM-Ⅱduring Equatorial East Pacific Ocean SSTA or not. The results show that the southwest monsoon over East Asian will break out later than normal, the intensity of the summer monsoon over the South China Sea (SCS) is stronger than normal, and more rainfall on Chinese main land is simulated when only IOD forcing exists. With both IOD and Equatorial East Pacific Ocean SSTA forcing, the southwest monsoon will break out much later than normal, the intensity of the SCS summer monsoon also is weaker than normal, and less rainfall in North China is simulated. Therefore, Equatorial East Pacific Ocean SSTA and IOD have a synergic effect. 展开更多
关键词 numerical simulation Indian Ocean Dipole (IOD) east asian monsoon
下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部