The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-...The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-fidelity models has been challenging due to the prohibitive computational costs.This paper presents an efficient parallel algorithm tailored for HVNM based on the Message Passing Interface standard.The algorithm evenly distributes the response matrix sets among processors during the matrix formation process,thus enabling independent construction without communication.Once the formation tasks are completed,a collective operation merges and shares the matrix sets among the processors.For the solution process,the problem domain is decomposed into subdomains assigned to specific processors,and the red-black Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation.Point-to-point communication is conducted between adjacent subdomains to exchange data along the boundaries.The accuracy and efficiency of the parallel algorithm are verified using the KAIST and JRR-3 test cases.Numerical results obtained with multiple processors agree well with those obtained from Monte Carlo calculations.The parallelization of HVNM results in eigenvalue errors of 31 pcm/-90 pcm and fission rate RMS errors of 1.22%/0.66%,respectively,for the 3D KAIST problem and the 3D JRR-3 problem.In addition,the parallel algorithm significantly reduces computation time,with an efficiency of 68.51% using 36 processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem.展开更多
An anisotropic diffusion filter can be used to model a flow-dependent background error covariance matrix,which can be achieved by solving the advection-diffusion equation.Because of the directionality of the advection...An anisotropic diffusion filter can be used to model a flow-dependent background error covariance matrix,which can be achieved by solving the advection-diffusion equation.Because of the directionality of the advection term,the discrete method needs to be chosen very carefully.The finite analytic method is an alternative scheme to solve the advection-diffusion equation.As a combination of analytical and numerical methods,it not only has high calculation accuracy but also holds the characteristic of the auto upwind.To demonstrate its ability,the one-dimensional steady and unsteady advection-diffusion equation numerical examples are respectively solved by the finite analytic method.The more widely used upwind difference method is used as a control approach.The result indicates that the finite analytic method has higher accuracy than the upwind difference method.For the two-dimensional case,the finite analytic method still has a better performance.In the three-dimensional variational assimilation experiment,the finite analytic method can effectively improve analysis field accuracy,and its effect is significantly better than the upwind difference and the central difference method.Moreover,it is still a more effective solution method in the strong flow region where the advective-diffusion filter performs most prominently.展开更多
In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decompositi...In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decomposition(VMD)is proposed.To improve the time-frequency performance,this method decomposes the data into narrowband signals and analyzes the internal energy and frequency variations within the signal.Genetic algorithms are used to adaptively optimize the mode number and bandwidth control parameters in the process of VMD.This approach aims to obtain the optimal parameter combination and perform mode decomposition on the micro-motion modulation signal.The optimal mode number and quadratic penalty factor for VMD are determined.Based on the optimal values of the mode number and quadratic penalty factor,the original signal is decomposed using VMD,resulting in optimal mode number intrinsic mode function(IMF)components.The effective modes are then reconstructed with the denoised modes,achieving signal denoising.Through experimental data verification,the proposed algorithm demonstrates effective denoising of modulation signals.In simulation data validation,the algorithm achieves the highest signal-to-noise ratio(SNR)and exhibits the best performance.展开更多
By introducing a smooth merit function for the median function, a new smooth merit function for box constrained variational inequalities (BVIs) was constructed. The function is simple and has some good differential pr...By introducing a smooth merit function for the median function, a new smooth merit function for box constrained variational inequalities (BVIs) was constructed. The function is simple and has some good differential properties. A damped Newton type method was presented based on it.Global and local superlinear/quadratic convergence results were obtained under mild conditions, and the finite termination property was also shown for the linear BVIs. Numerical results suggest that the method is efficient and promising.展开更多
A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO mode...A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behaviour of solution for corresponding problem is considered.展开更多
A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conce...A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conceptual oscillator model should consider the variations of both the eastern and western Pacific anomaly patterns. An E1 Niйo atmospheric physics model is proposed using a method for the variational iteration theory. Using the variational iteration method, the approximate expansions of the solution of corresponding problem are constructed. That is, firstly, introducing a set of functional and accounting their variationals, the Lagrange multiplicators are counted, and then the variational iteration is defined, finally, the approximate solution is obtained. From approximate expansions of the solution, the zonal sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the sea-air oscillation for E1 Niйo atmospheric physics model can be analyzed. E1 Niйo is a very complicated natural phenomenon. Hence basic models need to be reduced for the sea-air oscillator and are solved. The variational iteration is a simple and valid approximate method.展开更多
The simplified linear model of Grad-Shafranov (GS) reconstruction can be reformulated into an inverse boundary value problem of Laplace's equation. Therefore, in this paper we focus on the method of solving the inv...The simplified linear model of Grad-Shafranov (GS) reconstruction can be reformulated into an inverse boundary value problem of Laplace's equation. Therefore, in this paper we focus on the method of solving the inverse boundary value problem of Laplace's equation. In the first place, the variational regularization method is used to deal with the ill- posedness of the Cauchy problem for Laplace's equation. Then, the 'L-Curve' principle is suggested to be adopted in choosing the optimal regularization parameter. Finally, a numerical experiment is implemented with a section of Neumann and Dirichlet boundary conditions with observation errors. The results well converge to the exact solution of the problem, which proves the efficiency and robustness of the proposed method. When the order of observation error δ is 10-1, the order of the approximate result error can reach 10-3.展开更多
One of the advantages of the variational iteration method is the free choice of initial guess. In this paper we use the basic idea of the Jacobian-function method to construct a generalized trial function with some un...One of the advantages of the variational iteration method is the free choice of initial guess. In this paper we use the basic idea of the Jacobian-function method to construct a generalized trial function with some unknown parameters. The Jaulent-Miodek equations are used to illustrate effectiveness and convenience of this method, some new explicit exact travelling wave solutions have been obtained, which include bell-type soliton solution, kink-type soliton solutions, solitary wave solutions, and doubly periodic wave solutions.展开更多
In this paper,a scheme of dual-Doppler radar wind analysis based on a three-dimensional variational method is proposed and performed in two steps.First,the horizontal wind field is simultaneously recovered through min...In this paper,a scheme of dual-Doppler radar wind analysis based on a three-dimensional variational method is proposed and performed in two steps.First,the horizontal wind field is simultaneously recovered through minimizing a cost function defined as a radial observation term with the standard conjugate gradient method,avoiding a weighting parameter specification step.Compared with conventional dual-Doppler wind synthesis approaches,this variational method minimizes errors caused by interpolation from radar observation to analysis grid in the iterative solution process,which is one of the main sources of errors.Then,through the accelerated Liebmann method,the vertical velocity is further reestimated as an extra step by solving the Poisson equation with impermeable conditions imposed at the ground and near the tropopause.The Poisson equation defined by the second derivative of the vertical velocity is derived from the mass continuity equation.Compared with the method proposed by O’Brien,this method is less sensitive to the uncertainty of the boundary conditions and has better stability and reliability.Furthermore,the method proposed in this paper is applied to Doppler radar observation of a squall line process.It is shown that the retrieved vertical wind profile agrees well with the vertical profile obtained with the velocity–azimuth display(VAD)method,and the retrieved radial velocity as well as the analyzed positive and negative velocity centers and horizontal wind shear of the squall line are in accord with radar observations.There is a good correspondence between the divergence field of the derived wind field and the vertical velocity.And,the horizontal and vertical circulations within and around the squall line,as well as strong updrafts,the associated downdrafts,and associated rear inflow of the bow echo,are analyzed well.It is worth mentioning that the variational method in this paper can be applied to simultaneously synthesize the three-dimensional wind field from multiple-Doppler radar observations.展开更多
In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseu...In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].展开更多
Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational pr...Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational principles with multi-variables without arty variational crisis phenomenon. The method is to construct an energy trial-functional with an unknown function F, which can be readily identified by making the trial-functional stationary and using known constraint equations. As a result generalized variational principles with two kinds of independent variables (such as well-known Hellinger-Reissner variational principle and Hu-Washizu principle) and generalized variational principles with three kinds of independent variables (such as Chien's generalized variational principles) in elasticity have been deduced without using Lagrange multiplier method. By semi-inverse method, the author has also proved that Hu-Washizu principle is actually a variational principle with only two kinds of independent variables, stress-strain relations are still its constraints.展开更多
Aimed at the problem that the state estimation in the measurement update of the simultaneous localization and mapping(SLAM)method is incorrect or even not convergent because of the non-Gaussian measurement noise,outli...Aimed at the problem that the state estimation in the measurement update of the simultaneous localization and mapping(SLAM)method is incorrect or even not convergent because of the non-Gaussian measurement noise,outliers,or unknown and time-varying noise statistical characteristics,a robust SLAM method based on the improved variational Bayesian adaptive Kalman filtering(IVBAKF)is proposed.First,the measurement noise covariance is estimated using the variable Bayesian adaptive filtering algorithm.Then,the estimated covariance matrix is robustly processed through the weight function constructed in the form of a reweighted average.Finally,the system updates are iterated multiple times to further gradually correct the state estimation error.Furthermore,to observe features at different depths,a feature measurement model containing depth parameters is constructed.Experimental results show that when the measurement noise does not obey the Gaussian distribution and there are outliers in the measurement information,compared with the variational Bayesian adaptive SLAM method,the positioning accuracy of the proposed method is improved by 17.23%,20.46%,and 17.76%,which has better applicability and robustness to environmental disturbance.展开更多
In variational problem, the selection of functional weighting factors (FWF) is one of the key points for discussing many relevant studies. To overcome arbitrariness and subjectivity of the empirical selecting methods ...In variational problem, the selection of functional weighting factors (FWF) is one of the key points for discussing many relevant studies. To overcome arbitrariness and subjectivity of the empirical selecting methods used widely at present, this paper tries to put forward an optimal objective selecting method of FWF. The focus of the study is on the weighting factors optimal selection in the variation retrieval single-Doppler radar wind field with the simple adjoint models. Weighting factors in the meaning of minimal variance are calculated out with the matrix theory and the finite difference method of partial differential equation. Experiments show that the result is more objective comparing with the factors obtained with the empirical method.展开更多
A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the ...A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.展开更多
The Lagrange multiplier method plays an important role in establishing generalized variational principles notonly in tluid mechallics. but also in elasticity. Sometimes, however, one may come across variational crisi...The Lagrange multiplier method plays an important role in establishing generalized variational principles notonly in tluid mechallics. but also in elasticity. Sometimes, however, one may come across variational crisis(somemultipliers vanish identically). failing to achieve his aim. The crisis is caused by the fact that the Inultipliers are treatedas independent variables in the process of variatioll. but after identification they become functions of the originalindependent variables. To overcome it, a Inodified Lagrange multiplier method or semi-inverse method has beenproposed to deduce generalized varistional principles. Some e-camples are given to illustrate its convenience andeffectiveness of the novel method.展开更多
The Spectral Statistical Interpolation (SSI) analysis system of NCEP is used to assimilate meteorological data from the Global Positioning Satellite System (GPS/MET) refraction angles with the variational technique. V...The Spectral Statistical Interpolation (SSI) analysis system of NCEP is used to assimilate meteorological data from the Global Positioning Satellite System (GPS/MET) refraction angles with the variational technique. Verified by radiosonde, including GPS/MET observations into the analysis makes an overall improvement to the analysis variables of temperature, winds, and water vapor. However, the variational model with the ray-tracing method is quite expensive for numerical weather prediction and climate research. For example, about 4 000 GPS/MET refraction angles need to be assimilated to produce an ideal global analysis. Just one iteration of minimization will take more than 24 hours CPU time on the NCEP's Cray C90 computer. Although efforts have been taken to reduce the computational cost, it is still prohibitive for operational data assimilation. In this paper, a parallel version of the three-dimensional variational data assimilation model of GPS/MET occultation measurement suitable for massive parallel processors architectures is developed. The divide-and-conquer strategy is used to achieve parallelism and is implemented by message passing. The authors present the principles for the code's design and examine the performance on the state-of-the-art parallel computers in China. The results show that this parallel model scales favorably as the number of processors is increased. With the Memory-IO technique implemented by the author, the wall clock time per iteration used for assimilating 1420 refraction angles is reduced from 45 s to 12 s using 1420 processors. This suggests that the new parallelized code has the potential to be useful in numerical weather prediction (NWP) and climate studies.展开更多
Based on the nonlinear characiers of the discrete problems of some ellipticalvariational inequalities, this paper presents a numerical iterative method, the schemesof which are pithy and converge rapidly The new metho...Based on the nonlinear characiers of the discrete problems of some ellipticalvariational inequalities, this paper presents a numerical iterative method, the schemesof which are pithy and converge rapidly The new method possesses a high efficiency. insolving such applied engineering problems as obstacle problems and .free boundary.problems arising in fluid lubrications.展开更多
By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is propose...By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability.展开更多
In this paper,we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces.For solving this problem,we propose a new method that combines the advantages of the subgradient ext...In this paper,we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces.For solving this problem,we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method.Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in[0;1].The purpose of this work is to continue working in this direction,we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1.Under suitable mild conditions,we establish the weak convergence of the proposed algorithm.Moreover,linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions.Finally,some numerical illustrations are given to confirm the theoretical analysis.展开更多
The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this ...The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this technique. Tables and images were used to present the collected numerical results. The difference between the exact and numerical solutions demonstrates the effectiveness of the Mabel program’s solution, as well as the accuracy and closeness of the results this method produced. It also demonstrates the Mabel program’s ability to quickly and effectively produce the numerical solution.展开更多
基金supported by the National Key Research and Development Program of China(No.2020YFB1901900)the National Natural Science Foundation of China(Nos.U20B2011,12175138)the Shanghai Rising-Star Program。
文摘The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-fidelity models has been challenging due to the prohibitive computational costs.This paper presents an efficient parallel algorithm tailored for HVNM based on the Message Passing Interface standard.The algorithm evenly distributes the response matrix sets among processors during the matrix formation process,thus enabling independent construction without communication.Once the formation tasks are completed,a collective operation merges and shares the matrix sets among the processors.For the solution process,the problem domain is decomposed into subdomains assigned to specific processors,and the red-black Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation.Point-to-point communication is conducted between adjacent subdomains to exchange data along the boundaries.The accuracy and efficiency of the parallel algorithm are verified using the KAIST and JRR-3 test cases.Numerical results obtained with multiple processors agree well with those obtained from Monte Carlo calculations.The parallelization of HVNM results in eigenvalue errors of 31 pcm/-90 pcm and fission rate RMS errors of 1.22%/0.66%,respectively,for the 3D KAIST problem and the 3D JRR-3 problem.In addition,the parallel algorithm significantly reduces computation time,with an efficiency of 68.51% using 36 processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem.
基金The National Key Research and Development Program of China under contract Nos 2022YFC3104804,2021YFC3101501,and 2017YFC1404103the National Programme on Global Change and Air-Sea Interaction of China under contract No.GASI-IPOVAI-04the National Natural Science Foundation of China under contract Nos 41876014,41606039,and 11801402.
文摘An anisotropic diffusion filter can be used to model a flow-dependent background error covariance matrix,which can be achieved by solving the advection-diffusion equation.Because of the directionality of the advection term,the discrete method needs to be chosen very carefully.The finite analytic method is an alternative scheme to solve the advection-diffusion equation.As a combination of analytical and numerical methods,it not only has high calculation accuracy but also holds the characteristic of the auto upwind.To demonstrate its ability,the one-dimensional steady and unsteady advection-diffusion equation numerical examples are respectively solved by the finite analytic method.The more widely used upwind difference method is used as a control approach.The result indicates that the finite analytic method has higher accuracy than the upwind difference method.For the two-dimensional case,the finite analytic method still has a better performance.In the three-dimensional variational assimilation experiment,the finite analytic method can effectively improve analysis field accuracy,and its effect is significantly better than the upwind difference and the central difference method.Moreover,it is still a more effective solution method in the strong flow region where the advective-diffusion filter performs most prominently.
文摘In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decomposition(VMD)is proposed.To improve the time-frequency performance,this method decomposes the data into narrowband signals and analyzes the internal energy and frequency variations within the signal.Genetic algorithms are used to adaptively optimize the mode number and bandwidth control parameters in the process of VMD.This approach aims to obtain the optimal parameter combination and perform mode decomposition on the micro-motion modulation signal.The optimal mode number and quadratic penalty factor for VMD are determined.Based on the optimal values of the mode number and quadratic penalty factor,the original signal is decomposed using VMD,resulting in optimal mode number intrinsic mode function(IMF)components.The effective modes are then reconstructed with the denoised modes,achieving signal denoising.Through experimental data verification,the proposed algorithm demonstrates effective denoising of modulation signals.In simulation data validation,the algorithm achieves the highest signal-to-noise ratio(SNR)and exhibits the best performance.
基金Project supported by the Teaching and Research Award Program for the Outstanding YoungTeachers in Higher Education Institutes of Munistry of Education, P.R.China
文摘By introducing a smooth merit function for the median function, a new smooth merit function for box constrained variational inequalities (BVIs) was constructed. The function is simple and has some good differential properties. A damped Newton type method was presented based on it.Global and local superlinear/quadratic convergence results were obtained under mild conditions, and the finite termination property was also shown for the linear BVIs. Numerical results suggest that the method is efficient and promising.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90111011 and 10471039), the National Key Basic Research Special Foundation of China (Grant Nos 2003CB415101-03 and 2004CB418304), the Key Basic Research Foundation of the Chinese Academy of Sciences (Grant No KZCX3-SW-221) and in part by E-Institutes of Shanghai Municipal Education Commission (Grant No N.E03004).
文摘A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behaviour of solution for corresponding problem is considered.
文摘A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conceptual oscillator model should consider the variations of both the eastern and western Pacific anomaly patterns. An E1 Niйo atmospheric physics model is proposed using a method for the variational iteration theory. Using the variational iteration method, the approximate expansions of the solution of corresponding problem are constructed. That is, firstly, introducing a set of functional and accounting their variationals, the Lagrange multiplicators are counted, and then the variational iteration is defined, finally, the approximate solution is obtained. From approximate expansions of the solution, the zonal sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the sea-air oscillation for E1 Niйo atmospheric physics model can be analyzed. E1 Niйo is a very complicated natural phenomenon. Hence basic models need to be reduced for the sea-air oscillator and are solved. The variational iteration is a simple and valid approximate method.
基金Project supported by the National Natural Science Foundation of China(Grant No.41175025)
文摘The simplified linear model of Grad-Shafranov (GS) reconstruction can be reformulated into an inverse boundary value problem of Laplace's equation. Therefore, in this paper we focus on the method of solving the inverse boundary value problem of Laplace's equation. In the first place, the variational regularization method is used to deal with the ill- posedness of the Cauchy problem for Laplace's equation. Then, the 'L-Curve' principle is suggested to be adopted in choosing the optimal regularization parameter. Finally, a numerical experiment is implemented with a section of Neumann and Dirichlet boundary conditions with observation errors. The results well converge to the exact solution of the problem, which proves the efficiency and robustness of the proposed method. When the order of observation error δ is 10-1, the order of the approximate result error can reach 10-3.
基金National Natural Science Foundation of China under Grant No.10172056
文摘One of the advantages of the variational iteration method is the free choice of initial guess. In this paper we use the basic idea of the Jacobian-function method to construct a generalized trial function with some unknown parameters. The Jaulent-Miodek equations are used to illustrate effectiveness and convenience of this method, some new explicit exact travelling wave solutions have been obtained, which include bell-type soliton solution, kink-type soliton solutions, solitary wave solutions, and doubly periodic wave solutions.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1510400)the National Natural Science Foundation of China(Grant Nos.41975054 and 41930967)the Special Fund for Forecasters of China Meteorological Administration(Grant No.CMAYBY2018-040)。
文摘In this paper,a scheme of dual-Doppler radar wind analysis based on a three-dimensional variational method is proposed and performed in two steps.First,the horizontal wind field is simultaneously recovered through minimizing a cost function defined as a radial observation term with the standard conjugate gradient method,avoiding a weighting parameter specification step.Compared with conventional dual-Doppler wind synthesis approaches,this variational method minimizes errors caused by interpolation from radar observation to analysis grid in the iterative solution process,which is one of the main sources of errors.Then,through the accelerated Liebmann method,the vertical velocity is further reestimated as an extra step by solving the Poisson equation with impermeable conditions imposed at the ground and near the tropopause.The Poisson equation defined by the second derivative of the vertical velocity is derived from the mass continuity equation.Compared with the method proposed by O’Brien,this method is less sensitive to the uncertainty of the boundary conditions and has better stability and reliability.Furthermore,the method proposed in this paper is applied to Doppler radar observation of a squall line process.It is shown that the retrieved vertical wind profile agrees well with the vertical profile obtained with the velocity–azimuth display(VAD)method,and the retrieved radial velocity as well as the analyzed positive and negative velocity centers and horizontal wind shear of the squall line are in accord with radar observations.There is a good correspondence between the divergence field of the derived wind field and the vertical velocity.And,the horizontal and vertical circulations within and around the squall line,as well as strong updrafts,the associated downdrafts,and associated rear inflow of the bow echo,are analyzed well.It is worth mentioning that the variational method in this paper can be applied to simultaneously synthesize the three-dimensional wind field from multiple-Doppler radar observations.
基金supported by Scientific Research Fund of Sichuan Provincial Education Department (09ZB102)Scientific Research Fund of Science and Technology Deportment of Sichuan Provincial (2011JYZ011)
文摘In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].
文摘Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational principles with multi-variables without arty variational crisis phenomenon. The method is to construct an energy trial-functional with an unknown function F, which can be readily identified by making the trial-functional stationary and using known constraint equations. As a result generalized variational principles with two kinds of independent variables (such as well-known Hellinger-Reissner variational principle and Hu-Washizu principle) and generalized variational principles with three kinds of independent variables (such as Chien's generalized variational principles) in elasticity have been deduced without using Lagrange multiplier method. By semi-inverse method, the author has also proved that Hu-Washizu principle is actually a variational principle with only two kinds of independent variables, stress-strain relations are still its constraints.
基金Primary Research and Development Plan of Jiangsu Province(No.BE2022389)Jiangsu Province Agricultural Science and Technology Independent Innovation Fund Project(No.CX(22)3091)the National Natural Science Foundation of China(No.61773113)。
文摘Aimed at the problem that the state estimation in the measurement update of the simultaneous localization and mapping(SLAM)method is incorrect or even not convergent because of the non-Gaussian measurement noise,outliers,or unknown and time-varying noise statistical characteristics,a robust SLAM method based on the improved variational Bayesian adaptive Kalman filtering(IVBAKF)is proposed.First,the measurement noise covariance is estimated using the variable Bayesian adaptive filtering algorithm.Then,the estimated covariance matrix is robustly processed through the weight function constructed in the form of a reweighted average.Finally,the system updates are iterated multiple times to further gradually correct the state estimation error.Furthermore,to observe features at different depths,a feature measurement model containing depth parameters is constructed.Experimental results show that when the measurement noise does not obey the Gaussian distribution and there are outliers in the measurement information,compared with the variational Bayesian adaptive SLAM method,the positioning accuracy of the proposed method is improved by 17.23%,20.46%,and 17.76%,which has better applicability and robustness to environmental disturbance.
文摘In variational problem, the selection of functional weighting factors (FWF) is one of the key points for discussing many relevant studies. To overcome arbitrariness and subjectivity of the empirical selecting methods used widely at present, this paper tries to put forward an optimal objective selecting method of FWF. The focus of the study is on the weighting factors optimal selection in the variation retrieval single-Doppler radar wind field with the simple adjoint models. Weighting factors in the meaning of minimal variance are calculated out with the matrix theory and the finite difference method of partial differential equation. Experiments show that the result is more objective comparing with the factors obtained with the empirical method.
基金supported by the National Natural Science Foundation of China(Grant Nos.41490644,41475101 and 41421005)the CAS Strategic Priority Project(the Western Pacific Ocean System+2 种基金Project Nos.XDA11010105,XDA11020306 and XDA11010301)the NSFC-Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401)the NSFC Innovative Group Grant(Project No.41421005)
文摘A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.
文摘The Lagrange multiplier method plays an important role in establishing generalized variational principles notonly in tluid mechallics. but also in elasticity. Sometimes, however, one may come across variational crisis(somemultipliers vanish identically). failing to achieve his aim. The crisis is caused by the fact that the Inultipliers are treatedas independent variables in the process of variatioll. but after identification they become functions of the originalindependent variables. To overcome it, a Inodified Lagrange multiplier method or semi-inverse method has beenproposed to deduce generalized varistional principles. Some e-camples are given to illustrate its convenience andeffectiveness of the novel method.
基金supported by the National Natural Science Eoundation of China under Grant No.40221503the China National Key Programme for Development Basic Sciences (Abbreviation:973 Project,Grant No.G1999032801)
文摘The Spectral Statistical Interpolation (SSI) analysis system of NCEP is used to assimilate meteorological data from the Global Positioning Satellite System (GPS/MET) refraction angles with the variational technique. Verified by radiosonde, including GPS/MET observations into the analysis makes an overall improvement to the analysis variables of temperature, winds, and water vapor. However, the variational model with the ray-tracing method is quite expensive for numerical weather prediction and climate research. For example, about 4 000 GPS/MET refraction angles need to be assimilated to produce an ideal global analysis. Just one iteration of minimization will take more than 24 hours CPU time on the NCEP's Cray C90 computer. Although efforts have been taken to reduce the computational cost, it is still prohibitive for operational data assimilation. In this paper, a parallel version of the three-dimensional variational data assimilation model of GPS/MET occultation measurement suitable for massive parallel processors architectures is developed. The divide-and-conquer strategy is used to achieve parallelism and is implemented by message passing. The authors present the principles for the code's design and examine the performance on the state-of-the-art parallel computers in China. The results show that this parallel model scales favorably as the number of processors is increased. With the Memory-IO technique implemented by the author, the wall clock time per iteration used for assimilating 1420 refraction angles is reduced from 45 s to 12 s using 1420 processors. This suggests that the new parallelized code has the potential to be useful in numerical weather prediction (NWP) and climate studies.
文摘Based on the nonlinear characiers of the discrete problems of some ellipticalvariational inequalities, this paper presents a numerical iterative method, the schemesof which are pithy and converge rapidly The new method possesses a high efficiency. insolving such applied engineering problems as obstacle problems and .free boundary.problems arising in fluid lubrications.
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY20A010021,LY19A010002,LY20G030025)the Natural Science Founda-tion of Ningbo City,China(Grant Nos.2021J147,2021J235).
文摘By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability.
基金funded by the University of Science,Vietnam National University,Hanoi under project number TN.21.01。
文摘In this paper,we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces.For solving this problem,we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method.Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in[0;1].The purpose of this work is to continue working in this direction,we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1.Under suitable mild conditions,we establish the weak convergence of the proposed algorithm.Moreover,linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions.Finally,some numerical illustrations are given to confirm the theoretical analysis.
文摘The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this technique. Tables and images were used to present the collected numerical results. The difference between the exact and numerical solutions demonstrates the effectiveness of the Mabel program’s solution, as well as the accuracy and closeness of the results this method produced. It also demonstrates the Mabel program’s ability to quickly and effectively produce the numerical solution.