Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking co...Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking container cloud resources based on variational modal decomposition(VMD)-Permutation entropy(PE)and long short-term memory(LSTM)neural network to solve the prediction difficulties caused by the non-stationarity and volatility of resource data.The variational modal decomposition algorithm decomposes the time series data of cloud resources to obtain intrinsic mode function and residual components,which solves the signal decomposition algorithm’s end-effect and modal confusion problems.The permutation entropy is used to evaluate the complexity of the intrinsic mode function,and the reconstruction based on similar entropy and low complexity is used to reduce the difficulty of modeling.Finally,we use the LSTM and stacking fusion models to predict and superimpose;the stacking integration model integrates Gradient boosting regression(GBR),Kernel ridge regression(KRR),and Elastic net regression(ENet)as primary learners,and the secondary learner adopts the kernel ridge regression method with solid generalization ability.The Amazon public data set experiment shows that compared with Holt-winters,LSTM,and Neuralprophet models,we can see that the optimization range of multiple evaluation indicators is 0.338∼1.913,0.057∼0.940,0.000∼0.017 and 1.038∼8.481 in root means square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE)and variance(VAR),showing its stability and better prediction accuracy.展开更多
The pull test is a damaging detection method that fails to measure the actual length of a bolt.Thus,the ultrasonic echo is an important non?destructive testing method for bolt quality detection.In this research,the va...The pull test is a damaging detection method that fails to measure the actual length of a bolt.Thus,the ultrasonic echo is an important non?destructive testing method for bolt quality detection.In this research,the variational modal decomposition(VMD)method is introduced into the bolt detection signal analysis.On the basis of morphological filtering(MF)and the VMD method,a VMD?combined MF principle is established into a bolt detection signal analysis method(MF?VMD).MF?VMD is used to analyze the vibration and actual bolt detection signals of the simulation.Results show that MF?VMD effectively separates intrinsic mode function,even under strong interference.In comparison with conventional VMD method,the proposed method can remove noise interference.An intrinsic mode function of the field detection signal can be effectively identified by reflecting the signal at the bottom of the bolt.展开更多
In order to improve the detection accuracy of chaotic small signal prediction models under the background of sea clutter,a distributed sea clutter denoising algorithm is proposed,on the basis of variational modal deco...In order to improve the detection accuracy of chaotic small signal prediction models under the background of sea clutter,a distributed sea clutter denoising algorithm is proposed,on the basis of variational modal decomposition(VMD).The sea clutter signal is decomposed into variational modal functions(VMF)with different center bandwidths by means of VMD.By analyzing the autocorrelation characteristics of the deco mposed signal,we perform instantaneous half-period(IHP)and wavelet threshold denoising processing on the high-frequency and low-frequency components respectively,and regain the sea clutter signals.Based on LSSVM sea clutter prediction model,this research compares and analyzes the denoising effects of VMD.Experi ment results show that,the RMSE after denoising is reduced by two orders of magnitude,approximating 0.00034,with an apparently better denoising effect,compared with the root mean square error(RMSE)of the prediction before denoising.展开更多
Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the mari...Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the marine environment,the signals collected by hydrophone contain a variety of noises,which makes it challenging to extract useful signals for localization.To solve this problem,a hydrophone denoising algorithm is proposed based on variational modal decomposition(VMD)with grey wolf optimization.First,the average envelope entropy is used as the fitness function of the grey wolf optimizer to find the optimal solution for the parameters K andα.Afterward,the VMD algorithm decomposes the original signal parameters to obtain the intrinsic mode functions(IMFs).Subsequently,the number of interrelationships between each IMF and the original signal was calculated,the threshold value was set,and the noise signal was removed to calculate the time difference using the valid signal obtained by reconstruction.Finally,the arrival time difference is used to locate the origin of the leak.The localization accuracy of the method in finding leaks is investigated experimentally by constructing a simulated leak test rig,and the effectiveness and feasibility of the method are verified.展开更多
基金The National Natural Science Foundation of China (No.62262011)The Natural Science Foundation of Guangxi (No.2021JJA170130).
文摘Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking container cloud resources based on variational modal decomposition(VMD)-Permutation entropy(PE)and long short-term memory(LSTM)neural network to solve the prediction difficulties caused by the non-stationarity and volatility of resource data.The variational modal decomposition algorithm decomposes the time series data of cloud resources to obtain intrinsic mode function and residual components,which solves the signal decomposition algorithm’s end-effect and modal confusion problems.The permutation entropy is used to evaluate the complexity of the intrinsic mode function,and the reconstruction based on similar entropy and low complexity is used to reduce the difficulty of modeling.Finally,we use the LSTM and stacking fusion models to predict and superimpose;the stacking integration model integrates Gradient boosting regression(GBR),Kernel ridge regression(KRR),and Elastic net regression(ENet)as primary learners,and the secondary learner adopts the kernel ridge regression method with solid generalization ability.The Amazon public data set experiment shows that compared with Holt-winters,LSTM,and Neuralprophet models,we can see that the optimization range of multiple evaluation indicators is 0.338∼1.913,0.057∼0.940,0.000∼0.017 and 1.038∼8.481 in root means square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE)and variance(VAR),showing its stability and better prediction accuracy.
基金supported by the Key Project of the National Natural Science Foundation of China (No.51739006)the Open Research Fund of the Fundamental Science on Radioactive Geology and Exploration Technology Laboratory (No.RGET1502)+1 种基金the Open Research Fund of Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering (No.2017SDSJ05)the Project of the Hubei Foundation for Innovative Research Groups (No.2015CFA025)
文摘The pull test is a damaging detection method that fails to measure the actual length of a bolt.Thus,the ultrasonic echo is an important non?destructive testing method for bolt quality detection.In this research,the variational modal decomposition(VMD)method is introduced into the bolt detection signal analysis.On the basis of morphological filtering(MF)and the VMD method,a VMD?combined MF principle is established into a bolt detection signal analysis method(MF?VMD).MF?VMD is used to analyze the vibration and actual bolt detection signals of the simulation.Results show that MF?VMD effectively separates intrinsic mode function,even under strong interference.In comparison with conventional VMD method,the proposed method can remove noise interference.An intrinsic mode function of the field detection signal can be effectively identified by reflecting the signal at the bottom of the bolt.
文摘In order to improve the detection accuracy of chaotic small signal prediction models under the background of sea clutter,a distributed sea clutter denoising algorithm is proposed,on the basis of variational modal decomposition(VMD).The sea clutter signal is decomposed into variational modal functions(VMF)with different center bandwidths by means of VMD.By analyzing the autocorrelation characteristics of the deco mposed signal,we perform instantaneous half-period(IHP)and wavelet threshold denoising processing on the high-frequency and low-frequency components respectively,and regain the sea clutter signals.Based on LSSVM sea clutter prediction model,this research compares and analyzes the denoising effects of VMD.Experi ment results show that,the RMSE after denoising is reduced by two orders of magnitude,approximating 0.00034,with an apparently better denoising effect,compared with the root mean square error(RMSE)of the prediction before denoising.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFC2806102)the National Natural Science Foundation of China(Grant Nos.52171287,52325107)+2 种基金High Tech Ship Research Project of Ministry of Industry and Information Technology(Grant Nos.2023GXB01-05-004-03,GXBZH2022-293)the Science Foundation for Distinguished Young Scholars of Shandong Province(Grant No.ZR2022JQ25)the Taishan Scholars Project(Grant No.tsqn201909063)。
文摘Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the marine environment,the signals collected by hydrophone contain a variety of noises,which makes it challenging to extract useful signals for localization.To solve this problem,a hydrophone denoising algorithm is proposed based on variational modal decomposition(VMD)with grey wolf optimization.First,the average envelope entropy is used as the fitness function of the grey wolf optimizer to find the optimal solution for the parameters K andα.Afterward,the VMD algorithm decomposes the original signal parameters to obtain the intrinsic mode functions(IMFs).Subsequently,the number of interrelationships between each IMF and the original signal was calculated,the threshold value was set,and the noise signal was removed to calculate the time difference using the valid signal obtained by reconstruction.Finally,the arrival time difference is used to locate the origin of the leak.The localization accuracy of the method in finding leaks is investigated experimentally by constructing a simulated leak test rig,and the effectiveness and feasibility of the method are verified.