The effect of sintering temperature on microstructure, electrical properties, and pulse aging behavior of (V2O5-Mn3O4-Er2O3)-doped zinc oxide varistor ceramics was systematically studied. When the sintering temperat...The effect of sintering temperature on microstructure, electrical properties, and pulse aging behavior of (V2O5-Mn3O4-Er2O3)-doped zinc oxide varistor ceramics was systematically studied. When the sintering temperature increased, the average grain size increased from 6.1 to 8.7μm and the sintered density decreased from 5.52 to 5.43 g/cm3. The breakdown field decreased from 3856 to 922 V/cm with an increase in the sintering temperature up to 900 °C, whereas a further increase to 2352 V/cm at 925 °C. The nonlinear coefficient increased pronouncedly from 4.6 to 30.0 with an increase in the sintering temperature. The varistor ceramics sintered at 850 °C exhibited the best clamping characteristics, with the clamp voltage ratio of the range of 2.22-2.88 for pulse current of 1-25 A. The varistor ceramics sintered at 925 °C exhibited the strongest stability, with %ΔE1 mA/cm2=-8.8% after applying the multi-pulse current of 25 A.展开更多
The microstructure, electrical and dielectric properties, and DC-accelerated aging of the ZPCCA (ZnO-Pr6O11-CoO- Cr203-A1203) ceramics were investigated with various contents of Er203. The ceramic phases consisted o...The microstructure, electrical and dielectric properties, and DC-accelerated aging of the ZPCCA (ZnO-Pr6O11-CoO- Cr203-A1203) ceramics were investigated with various contents of Er203. The ceramic phases consisted of a bulk phase of ZnO grains, and a minor secondary phase of mixture of Pr6O11 and Er203. The increase of the content of doped Er203 increased the densities of sintered pellet from 5.66 to 5.85 g/cm3, and decreased the average grain size from 9.6 to 6.3 μm. With the increase of the content of doped Er203, the breakdown field increased from 2390 to 4530 V/cm, and the nonlinear coefficient increased from 28.4 to 39.1. The sample doped with 0.25 mol.% Er203 exhibited the strongest electrical stability; variation rates for the breakdown field measured at 1.0 mA/cm2, and for the non-ohmic coefficient were -3.4% and -23,8%, respectively, after application of a stress of 0.95 Eu/125 ℃/24 h.展开更多
文摘The effect of sintering temperature on microstructure, electrical properties, and pulse aging behavior of (V2O5-Mn3O4-Er2O3)-doped zinc oxide varistor ceramics was systematically studied. When the sintering temperature increased, the average grain size increased from 6.1 to 8.7μm and the sintered density decreased from 5.52 to 5.43 g/cm3. The breakdown field decreased from 3856 to 922 V/cm with an increase in the sintering temperature up to 900 °C, whereas a further increase to 2352 V/cm at 925 °C. The nonlinear coefficient increased pronouncedly from 4.6 to 30.0 with an increase in the sintering temperature. The varistor ceramics sintered at 850 °C exhibited the best clamping characteristics, with the clamp voltage ratio of the range of 2.22-2.88 for pulse current of 1-25 A. The varistor ceramics sintered at 925 °C exhibited the strongest stability, with %ΔE1 mA/cm2=-8.8% after applying the multi-pulse current of 25 A.
文摘The microstructure, electrical and dielectric properties, and DC-accelerated aging of the ZPCCA (ZnO-Pr6O11-CoO- Cr203-A1203) ceramics were investigated with various contents of Er203. The ceramic phases consisted of a bulk phase of ZnO grains, and a minor secondary phase of mixture of Pr6O11 and Er203. The increase of the content of doped Er203 increased the densities of sintered pellet from 5.66 to 5.85 g/cm3, and decreased the average grain size from 9.6 to 6.3 μm. With the increase of the content of doped Er203, the breakdown field increased from 2390 to 4530 V/cm, and the nonlinear coefficient increased from 28.4 to 39.1. The sample doped with 0.25 mol.% Er203 exhibited the strongest electrical stability; variation rates for the breakdown field measured at 1.0 mA/cm2, and for the non-ohmic coefficient were -3.4% and -23,8%, respectively, after application of a stress of 0.95 Eu/125 ℃/24 h.