In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero c...In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero coefficient, the model structure specification is accomplished by introducing a novel penalized estimating equation. Under some mild conditions, the asymptotic properties for the proposed model selection and estimation results, such as the sparsity and oracle property, are established. Some numerical simulation studies and a real data analysis are presented to examine the finite sample performance of the procedure.展开更多
Variable selection for varying coefficient models includes the separation of varying and constant effects,and the selection of variables with nonzero varying effects and those with nonzero constant effects.This paper ...Variable selection for varying coefficient models includes the separation of varying and constant effects,and the selection of variables with nonzero varying effects and those with nonzero constant effects.This paper proposes a unified variable selection approach called the double-penalized quadratic inference functions method for varying coefficient models of longitudinal data.The proposed method can not only separate varying coefficients and constant coefficients,but also estimate and select the nonzero varying coefficients and nonzero constant coefficients.It is suitable for variable selection of linear models,varying coefficient models,and partial linear varying coefficient models.Under regularity conditions,the proposed method is consistent in both separation and selection of varying coefficients and constant coefficients.The obtained estimators of varying coefficients possess the optimal convergence rate of non-parametric function estimation,and the estimators of nonzero constant coefficients are consistent and asymptotically normal.Finally,the authors investigate the finite sample performance of the proposed method through simulation studies and a real data analysis.The results show that the proposed method performs better than the existing competitor.展开更多
We consider the problem of variable selection for the fixed effects varying coefficient models. A variable selection procedure is developed using basis function approximations and group nonconcave penalized functions,...We consider the problem of variable selection for the fixed effects varying coefficient models. A variable selection procedure is developed using basis function approximations and group nonconcave penalized functions, and the fixed effects are removed using the proper weight matrices. The proposed procedure simultaneously removes the fixed individual effects, selects the significant variables and estimates the nonzero coefficient functions. With appropriate selection of the tuning parameters, an asymptotic theory for the resulting estimates is established under suitable conditions. Simulation studies are carried out to assess the performance of our proposed method, and a real data set is analyzed for further illustration.展开更多
Varying-coefficient models with longitudinal observations are very useful in epidemiology and some other practical fields.In this paper,a reducing component procedure is proposed for es- timating the unknown functions...Varying-coefficient models with longitudinal observations are very useful in epidemiology and some other practical fields.In this paper,a reducing component procedure is proposed for es- timating the unknown functions and their derivatives in very general models,in which the unknown coefficient functions admit different or the same degrees of smoothness and the covariates can be time- dependent.The asymptotic properties of the estimators,such as consistency,rate of convergence and asymptotic distribution,are derived.The asymptotic results show that the asymptotic variance of the reducing component estimators is smaller than that of the existing estimators when the coefficient functions admit different degrees of smoothness.Finite sample properties of our procedures are studied through Monte Carlo simulations.展开更多
In this paper,the estimation for a class of generalized varying coefficient models with error-prone covariates is considered.By combining basis function approximations with some auxiliary variables,an instrumental var...In this paper,the estimation for a class of generalized varying coefficient models with error-prone covariates is considered.By combining basis function approximations with some auxiliary variables,an instrumental variable type estimation procedure is proposed.The asymptotic results of the estimator,such as the consistency and the weak convergence rate,are obtained.The proposed procedure can attenuate the effect of measurement errors and have proved workable for finite samples.展开更多
In this puper, we consider the problem of variabie selection and model detection in varying coefficient models with longitudinM data. We propose a combined penalization procedure to select the significant variables, d...In this puper, we consider the problem of variabie selection and model detection in varying coefficient models with longitudinM data. We propose a combined penalization procedure to select the significant variables, detect the true structure of the model and estimate the unknown regression coefficients simultaneously. With appropriate selection of the tuning parameters, we show that the proposed procedure is consistent in both variable selection and the separation of varying and constant coefficients, and the penalized estimators have the oracle property. Finite sample performances of the proposed method are illustrated by some simulation studies and the real data analysis.展开更多
In this paper, we consider the empirical likelihood-based inferences for varying coefficient models Y = X^τα(U) + ε when X are subject to missing at random. Based on the inverse probability-weighted idea, a clas...In this paper, we consider the empirical likelihood-based inferences for varying coefficient models Y = X^τα(U) + ε when X are subject to missing at random. Based on the inverse probability-weighted idea, a class of empirical log-likelihood ratios, as well as two maximum empirical likelihood estimators, are developed for α(u). The resulting statistics are shown to have standard chi-squared or normal distributions asymptotically.Simulation studies are also constructed to illustrate the finite sample properties of the proposed statistics.展开更多
The study of spatial econometrics has developed rapidly and has found wide applications in many different scientific fields,such as demography,epidemiology,regional economics,and psychology.With the deepening of...The study of spatial econometrics has developed rapidly and has found wide applications in many different scientific fields,such as demography,epidemiology,regional economics,and psychology.With the deepening of research,some scholars find that there are some model specifications in spatial econometrics,such as spatial autoregressive(SAR)model and matrix exponential spatial specification(MESS),which cannot be nested within each other.Compared with the common SAR models,the MESS models have computational advantages because it eliminates the need for logarithmic determinant calculation in maximum likelihood estimation and Bayesian estimation.Meanwhile,MESS models have theoretical advantages.However,the theoretical research and application of MESS models have not been promoted vigorously.Therefore,the study of MESS model theory has practical significance.This paper studies the quasi maximum likelihood estimation for matrix exponential spatial specification(MESS)varying coefficient panel data models with fixed effects.It is shown that the estimators of model parameters and function coefficients satisfy the consistency and asymptotic normality to make a further supplement for the theoretical study of MESS model.展开更多
Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest ...Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest growth and yield, succession and carbon budget models. However, the diameter at breast height (dbh) can be more accurately obtained and at lower cost, than total tree height. Hence, generalized height-diameter (h-d) models that predict tree height from dbh, age and other covariates are needed. For a more flexible but biologically plausible estimation of covariate effects we use shape constrained generalized additive models as an extension of existing h-d model approaches. We use causal site parameters such as index of aridity to enhance the generality and causality of the models and to enable predictions under projected changeable climatic conditions. Methods: We develop unconstrained generalized additive models (GAM) and shape constrained generalized additive models (SCAM) for investigating the possible effects of tree-specific parameters such as tree age, relative diameter at breast height, and site-specific parameters such as index of aridity and sum of daily mean temperature during vegetation period, on the h-d relationship of forests in Lower Saxony, Germany. Results: Some of the derived effects, e.g. effects of age, index of aridity and sum of daily mean temperature have significantly non-linear pattern. The need for using SCAM results from the fact that some of the model effects show partially implausible patterns especially at the boundaries of data ranges. The derived model predicts monotonically increasing levels of tree height with increasing age and temperature sum and decreasing aridity and social rank of a tree within a stand, The definition of constraints leads only to marginal or minor decline in the model statistics like AIC An observed structured spatial trend in tree height is modelled via 2-dimensional surface fitting. Conclusions: We demonstrate that the SCAM approach allows optimal regression modelling flexibility similar to the standard GAM but with the additional possibility of defining specific constraints for the model effects. The longitudinal character of the model allows for tree height imputation for the current status of forests but also for future tree height prediction.展开更多
The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic ...The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic normal distribution under the null hypothesis of no serial correlation.Some MonteCarlo experiments are conducted to examine the finite sample performance of the proposed V_(N,p) teststatistic.Simulation results confirm that the proposed test performs satisfactorily in estimated sizeand power.展开更多
The purpose of this paper is two fold. First, we investigate estimation for varying coefficient partially linear models in which covariates in the nonparametric part are measured with errors. As there would be some sp...The purpose of this paper is two fold. First, we investigate estimation for varying coefficient partially linear models in which covariates in the nonparametric part are measured with errors. As there would be some spurious covariates in the linear part, a penalized profile least squares estimation is suggested with the assistance from smoothly clipped absolute deviation penalty. However, the estimator is often biased due to the existence of measurement errors, a bias correction is proposed such that the estimation consistency with the oracle property is proved. Second, based on the estimator, a test statistic is constructed to check a linear hypothesis of the parameters and its asymptotic properties are studied. We prove that the existence of measurement errors causes intractability of the limiting null distribution that requires a Monte Carlo approximation and the absence of the errors can lead to a chi-square limit. Furthermore, confidence regions of the parameter of interest can also be constructed. Simulation studies and a real data example are conducted to examine the performance of our estimators and test statistic.展开更多
In this paper, the parameters of a p-dimensional linear structural EV(error-in-variable)model are estimated when the coefficients vary with a real variable and the model error is time series.The adjust weighted least ...In this paper, the parameters of a p-dimensional linear structural EV(error-in-variable)model are estimated when the coefficients vary with a real variable and the model error is time series.The adjust weighted least squares(AWLS) method is used to estimate the parameters. It is shown that the estimators are weakly consistent and asymptotically normal, and the optimal convergence rate is also obtained. Simulations study are undertaken to illustrate our AWLSEs have good performance.展开更多
In real data analysis,the underlying model is frequently unknown.Hence,the modeling strategy plays a key role in the success of data analysis.Inspired by the idea of model averaging,we propose a novel semiparametric m...In real data analysis,the underlying model is frequently unknown.Hence,the modeling strategy plays a key role in the success of data analysis.Inspired by the idea of model averaging,we propose a novel semiparametric modeling strategy for the conditional quantile prediction,without assuming that the underlying model is any specific parametric or semiparametric model.Due to the optimality of the weights selected by leaveone-out cross-validation,the proposed modeling strategy provides a more precise prediction than those based on some commonly used semiparametric models such as the varying coefficient and additive models.Asymptotic properties are established in the proposed modeling strategy along with its estimation procedure.We conducted extensive simulations to compare our method with alternatives across various scenarios.The results show that our method provides more accurate predictions.Finally,we applied our approach to the Boston housing data,yielding more precise quantile predictions of house prices compared with commonly used methods,and thus offering a clearer picture of the Boston housing market.展开更多
文摘In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero coefficient, the model structure specification is accomplished by introducing a novel penalized estimating equation. Under some mild conditions, the asymptotic properties for the proposed model selection and estimation results, such as the sparsity and oracle property, are established. Some numerical simulation studies and a real data analysis are presented to examine the finite sample performance of the procedure.
基金supported in part by the National Science Foundation of China under Grant Nos.12071305and 71803001in part by the national social science foundation of China under Grant No.19BTJ014+1 种基金in part by the University Social Science Research Project of Anhui Province under Grant No.SK2020A0051in part by the Social Science Foundation of the Ministry of Education of China under Grant Nos.19YJCZH250 and 21YJAZH081。
文摘Variable selection for varying coefficient models includes the separation of varying and constant effects,and the selection of variables with nonzero varying effects and those with nonzero constant effects.This paper proposes a unified variable selection approach called the double-penalized quadratic inference functions method for varying coefficient models of longitudinal data.The proposed method can not only separate varying coefficients and constant coefficients,but also estimate and select the nonzero varying coefficients and nonzero constant coefficients.It is suitable for variable selection of linear models,varying coefficient models,and partial linear varying coefficient models.Under regularity conditions,the proposed method is consistent in both separation and selection of varying coefficients and constant coefficients.The obtained estimators of varying coefficients possess the optimal convergence rate of non-parametric function estimation,and the estimators of nonzero constant coefficients are consistent and asymptotically normal.Finally,the authors investigate the finite sample performance of the proposed method through simulation studies and a real data analysis.The results show that the proposed method performs better than the existing competitor.
基金Supported by National Natural Science Foundation of China(Grant Nos.11471029,11101014 and 11301279)the Beijing Natural Science Foundation(Grant No.1142002+3 种基金the Science and Technology Project of Beijing Municipal Education Commission(Grant No.KM201410005010)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.12KJB110016)CERG Grant from the Hong Kong Research Grants Council(Grant No.HKBU 202012)FRG Grant from Hong Kong Baptist University(Grant No.FRG2/12-13/077)
文摘We consider the problem of variable selection for the fixed effects varying coefficient models. A variable selection procedure is developed using basis function approximations and group nonconcave penalized functions, and the fixed effects are removed using the proper weight matrices. The proposed procedure simultaneously removes the fixed individual effects, selects the significant variables and estimates the nonzero coefficient functions. With appropriate selection of the tuning parameters, an asymptotic theory for the resulting estimates is established under suitable conditions. Simulation studies are carried out to assess the performance of our proposed method, and a real data set is analyzed for further illustration.
基金Research Foundation for Doctor Programme (Grant No.20060254006)the National Natural Science Foundation of China (Grant No.10671089)
文摘Varying-coefficient models with longitudinal observations are very useful in epidemiology and some other practical fields.In this paper,a reducing component procedure is proposed for es- timating the unknown functions and their derivatives in very general models,in which the unknown coefficient functions admit different or the same degrees of smoothness and the covariates can be time- dependent.The asymptotic properties of the estimators,such as consistency,rate of convergence and asymptotic distribution,are derived.The asymptotic results show that the asymptotic variance of the reducing component estimators is smaller than that of the existing estimators when the coefficient functions admit different degrees of smoothness.Finite sample properties of our procedures are studied through Monte Carlo simulations.
基金Supported by the National Natural Science Foundation of China(11101119)the Natural Science Foundation of Guangxi(2010GXNSFB013051)the Philosophy and Social Sciences Foundation of Guangxi(11FTJ002)
文摘In this paper,the estimation for a class of generalized varying coefficient models with error-prone covariates is considered.By combining basis function approximations with some auxiliary variables,an instrumental variable type estimation procedure is proposed.The asymptotic results of the estimator,such as the consistency and the weak convergence rate,are obtained.The proposed procedure can attenuate the effect of measurement errors and have proved workable for finite samples.
基金Supported by National Natural Science Foundation of China(Grant Nos.11501522,11101014,11001118 and11171012)National Statistical Research Projects(Grant No.2014LZ45)+2 种基金the Doctoral Fund of Innovation of Beijing University of Technologythe Science and Technology Project of the Faculty Adviser of Excellent PhD Degree Thesis of Beijing(Grant No.20111000503)the Beijing Municipal Education Commission Foundation(Grant No.KM201110005029)
文摘In this puper, we consider the problem of variabie selection and model detection in varying coefficient models with longitudinM data. We propose a combined penalization procedure to select the significant variables, detect the true structure of the model and estimate the unknown regression coefficients simultaneously. With appropriate selection of the tuning parameters, we show that the proposed procedure is consistent in both variable selection and the separation of varying and constant coefficients, and the penalized estimators have the oracle property. Finite sample performances of the proposed method are illustrated by some simulation studies and the real data analysis.
基金supported in part by NSF of China(No.11461029)NSF of Jiangxi Province(No.20142BAB211014)YSFP of Jiangxi provincial education department(No.GJJ14350)
文摘In this paper, we consider the empirical likelihood-based inferences for varying coefficient models Y = X^τα(U) + ε when X are subject to missing at random. Based on the inverse probability-weighted idea, a class of empirical log-likelihood ratios, as well as two maximum empirical likelihood estimators, are developed for α(u). The resulting statistics are shown to have standard chi-squared or normal distributions asymptotically.Simulation studies are also constructed to illustrate the finite sample properties of the proposed statistics.
基金supported by the Innovation Project of Guangxi Graduate Education(YCSW2021073).
文摘The study of spatial econometrics has developed rapidly and has found wide applications in many different scientific fields,such as demography,epidemiology,regional economics,and psychology.With the deepening of research,some scholars find that there are some model specifications in spatial econometrics,such as spatial autoregressive(SAR)model and matrix exponential spatial specification(MESS),which cannot be nested within each other.Compared with the common SAR models,the MESS models have computational advantages because it eliminates the need for logarithmic determinant calculation in maximum likelihood estimation and Bayesian estimation.Meanwhile,MESS models have theoretical advantages.However,the theoretical research and application of MESS models have not been promoted vigorously.Therefore,the study of MESS model theory has practical significance.This paper studies the quasi maximum likelihood estimation for matrix exponential spatial specification(MESS)varying coefficient panel data models with fixed effects.It is shown that the estimators of model parameters and function coefficients satisfy the consistency and asymptotic normality to make a further supplement for the theoretical study of MESS model.
文摘Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest growth and yield, succession and carbon budget models. However, the diameter at breast height (dbh) can be more accurately obtained and at lower cost, than total tree height. Hence, generalized height-diameter (h-d) models that predict tree height from dbh, age and other covariates are needed. For a more flexible but biologically plausible estimation of covariate effects we use shape constrained generalized additive models as an extension of existing h-d model approaches. We use causal site parameters such as index of aridity to enhance the generality and causality of the models and to enable predictions under projected changeable climatic conditions. Methods: We develop unconstrained generalized additive models (GAM) and shape constrained generalized additive models (SCAM) for investigating the possible effects of tree-specific parameters such as tree age, relative diameter at breast height, and site-specific parameters such as index of aridity and sum of daily mean temperature during vegetation period, on the h-d relationship of forests in Lower Saxony, Germany. Results: Some of the derived effects, e.g. effects of age, index of aridity and sum of daily mean temperature have significantly non-linear pattern. The need for using SCAM results from the fact that some of the model effects show partially implausible patterns especially at the boundaries of data ranges. The derived model predicts monotonically increasing levels of tree height with increasing age and temperature sum and decreasing aridity and social rank of a tree within a stand, The definition of constraints leads only to marginal or minor decline in the model statistics like AIC An observed structured spatial trend in tree height is modelled via 2-dimensional surface fitting. Conclusions: We demonstrate that the SCAM approach allows optimal regression modelling flexibility similar to the standard GAM but with the additional possibility of defining specific constraints for the model effects. The longitudinal character of the model allows for tree height imputation for the current status of forests but also for future tree height prediction.
基金supported by the National Natural Science Foundation of China under Grant Nos. 10871217 and 40574003the Science and Technology Project of Chongqing Education Committee under Grant No. KJ080609+1 种基金the Doctor's Start-up Research Fund under Grant No. 08-52204the Youth Science Research Fund of Chongging Technology and Business University under Grant No. 0852008
文摘The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic normal distribution under the null hypothesis of no serial correlation.Some MonteCarlo experiments are conducted to examine the finite sample performance of the proposed V_(N,p) teststatistic.Simulation results confirm that the proposed test performs satisfactorily in estimated sizeand power.
基金supported by National Natural Science Foundation of China (Grant Nos. 11401006, 11671299 and 11671042)a grant from the University Grants Council of Hong Kong+1 种基金the China Postdoctoral Science Foundation (Grant No. 2017M611083)the National Statistical Science Research Program of China (Grant No. 2015LY55)
文摘The purpose of this paper is two fold. First, we investigate estimation for varying coefficient partially linear models in which covariates in the nonparametric part are measured with errors. As there would be some spurious covariates in the linear part, a penalized profile least squares estimation is suggested with the assistance from smoothly clipped absolute deviation penalty. However, the estimator is often biased due to the existence of measurement errors, a bias correction is proposed such that the estimation consistency with the oracle property is proved. Second, based on the estimator, a test statistic is constructed to check a linear hypothesis of the parameters and its asymptotic properties are studied. We prove that the existence of measurement errors causes intractability of the limiting null distribution that requires a Monte Carlo approximation and the absence of the errors can lead to a chi-square limit. Furthermore, confidence regions of the parameter of interest can also be constructed. Simulation studies and a real data example are conducted to examine the performance of our estimators and test statistic.
基金Supported by the Educational Commission of Hubei Province of China(Grant No.D20112503)National Natural Science Foundation of China(Grant Nos.11071022,11231010 and 11028103)the foundation of Beijing Center of Mathematics and Information Sciences
文摘In this paper, the parameters of a p-dimensional linear structural EV(error-in-variable)model are estimated when the coefficients vary with a real variable and the model error is time series.The adjust weighted least squares(AWLS) method is used to estimate the parameters. It is shown that the estimators are weakly consistent and asymptotically normal, and the optimal convergence rate is also obtained. Simulations study are undertaken to illustrate our AWLSEs have good performance.
基金supported by National Natural Science Foundation of China(Grant Nos.11931014 and 12201091)the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQ-MSX0852)+1 种基金the National Statistical Science Research Program of China(Grant No.2022LY019)the Science and Technology Research Program of the Chongqing Municipal Education Commission(Grant No.KJQN202100526)。
文摘In real data analysis,the underlying model is frequently unknown.Hence,the modeling strategy plays a key role in the success of data analysis.Inspired by the idea of model averaging,we propose a novel semiparametric modeling strategy for the conditional quantile prediction,without assuming that the underlying model is any specific parametric or semiparametric model.Due to the optimality of the weights selected by leaveone-out cross-validation,the proposed modeling strategy provides a more precise prediction than those based on some commonly used semiparametric models such as the varying coefficient and additive models.Asymptotic properties are established in the proposed modeling strategy along with its estimation procedure.We conducted extensive simulations to compare our method with alternatives across various scenarios.The results show that our method provides more accurate predictions.Finally,we applied our approach to the Boston housing data,yielding more precise quantile predictions of house prices compared with commonly used methods,and thus offering a clearer picture of the Boston housing market.