A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying...A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying fiexural stiffness and an edge crack, the SSEM is used to detect the crack location effectively by numerical modal shapes. As a complicated beam, the glass fiber-reinforced composite model of a wind turbine blade is studied based on an experimental modal analysis. The SSEM is used to calculate the damage index from the measured modal parameters and locate the damage position in the blade model successfully. The results indicate that the SSEM based on the modal shapes can be used to detect the damages in complicated beams or beam-like structures for engineering applications.展开更多
基金supported by the National Basic Research Program of China (973 Program)(No. 2007CB714603)
文摘A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying fiexural stiffness and an edge crack, the SSEM is used to detect the crack location effectively by numerical modal shapes. As a complicated beam, the glass fiber-reinforced composite model of a wind turbine blade is studied based on an experimental modal analysis. The SSEM is used to calculate the damage index from the measured modal parameters and locate the damage position in the blade model successfully. The results indicate that the SSEM based on the modal shapes can be used to detect the damages in complicated beams or beam-like structures for engineering applications.