An LMS-like algorithm is applied for estimating the time-varying parameter theta-n in the linear model y(n) = phi-n-tau-theta-n + upsilon-n, which is general in the sense that none of the probabilistic properties such...An LMS-like algorithm is applied for estimating the time-varying parameter theta-n in the linear model y(n) = phi-n-tau-theta-n + upsilon-n, which is general in the sense that none of the probabilistic properties such as stationarity, Markov property, independence and ergodicity is imposed on any of the processes {y(n)}, {phi-n}, {theta-n} and {upsilon-n}. It is shown that the alpha-th moment of the estimation error is of order of the alpha-th moment of the observation noise and the parameter variation w(n) change in equivalence theta-n - theta-n-1.展开更多
In this article, we establish the Bessel polynomials with varying large negative parameters and discuss their orthogonality based on the generalized Bessel polynomials. By using the Riemann-Hilbert boundary value prob...In this article, we establish the Bessel polynomials with varying large negative parameters and discuss their orthogonality based on the generalized Bessel polynomials. By using the Riemann-Hilbert boundary value problem on the positive real axis, we get the Riemann-Hilbert characterization of the main Bessel polynomials with varying large negative parameters.展开更多
Pattern formations by Gierer-Meinhardt(GM)activator-inhibitor model are considered in this paper.By linear analysis,critical value of bifurcation parameter can be evaluated to ensure Turing instability.Numerical simul...Pattern formations by Gierer-Meinhardt(GM)activator-inhibitor model are considered in this paper.By linear analysis,critical value of bifurcation parameter can be evaluated to ensure Turing instability.Numerical simulations are tested by using second order semi-implicit backward difference methods for time discretization and the meshless Kansa method for spatially discretization.We numerically show the convergence of our algorithm.Pattern transitions in irregular domains are shown.We also provide various parameter settings on some irregular domains for different patterns appeared in nature.To further simulate patterns in reality,we construct different kinds of animal type domains and obtain desired patterns by applying proposed parameter settings.展开更多
Magnetic-liquid double suspension bearing(MLDSB)is mainly supported by electromagnetic suspension and supplemented by hydrostatic supporting.Its bearing capacity and stiffness can be greatly improved,and then it is su...Magnetic-liquid double suspension bearing(MLDSB)is mainly supported by electromagnetic suspension and supplemented by hydrostatic supporting.Its bearing capacity and stiffness can be greatly improved,and then it is suitable for the occasions of medium speed,heavy load.When the bearing system is excited by periodic force,the flow q and current i regulated by the double-closed-loop control mechanism change periodically.Then the risk of parametric resonance in MLDSB is greatly aggravated by the change of the parameter system,which seriously affects its operation stabil-ity and reliability.Therefore,this paper intends to study the resonance characteristics of the parame-ter system of MLDSB.Firstly,Marshall-Duffing equation of the parametric system is established by taking the flow q and the current i as variables respectively.Then,by using the asymptotic method,the occurrence condition and variation rule of the principal,1/2 Harmonic and 1/3 Harmonic para-metric resonance are solved.The results show that only the 1/2 Harmonic resonance of the flow q parameter varying system occurs accompanied by the resonance condition of high frequency.The principal,1/2 Harmonic and 1/3 Harmonic parametric resonance of the current i occur accompanied by the resonance condition of high frequency.And the 1/2 Harmonic resonance of the current i oc-curs accompanied by the non-single value bifurcation and dynamic bifurcation.The paper can pro-vide theoretical reference for the parameter design and stable operation of MLDSB.展开更多
For constrained linear parameter varying(LPV)systems,this survey comprehensively reviews the literatures on output feedback robust model predictive control(OFRMPC)over the past two decades from the aspects on motivati...For constrained linear parameter varying(LPV)systems,this survey comprehensively reviews the literatures on output feedback robust model predictive control(OFRMPC)over the past two decades from the aspects on motivations,main contributions,and the related techniques.According to the types of state observer systems and scheduling parameters of LPV systems,different kinds of OFRMPC approaches are summarized and compared.The extensions of OFRMPC for LPV systems to other related uncertain systems are also investigated.The methods of dealing with system uncertainties and constraints in different kinds of OFRMPC optimizations are given.Key issues on OFRMPC optimizations for LPV systems are discussed.Furthermore,the future research directions on OFRMPC for LPV systems are suggested.展开更多
Assessment of the Hubble parameter as an indicator of the expansion rate of the universe holds a central position in the field of astronomy. From its initial estimate of about 500 km<span style="white-space:no...Assessment of the Hubble parameter as an indicator of the expansion rate of the universe holds a central position in the field of astronomy. From its initial estimate of about 500 km<span style="white-space:nowrap;">⋅</span>sec<sup>-1</sup><span style="white-space:nowrap;">⋅</span>parsc<sup>-1</sup>, this value had been steadily amended as the observational tools became more accurate and precise. Despite this, a gap remains between the value of observations relating to local and nonlocal estimations of the Hubble parameter that gave rise to what became known as the Hubble tension. This tension is addressed here while dealing with space fabric as a cosmological fluid that undergoes transition.展开更多
A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tes...A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tests by simulating deep-sea environment have many disadvantages, such as expensive cost, long test cycles, and difficult to achieve low-temperature simulation, which is only used as a supplementary means for confirmatory experiment. This paper proposes a novel theoretical approach based on the linear varying parameters (LVP) modeling to foresee the dynamic performances of the driving unit. Firstly, based on the varying environment features, dynamic expressions of the compressibility and viscosity of hydranlic oil are derived to reveal the fluid performances changing. Secondly, models of hydraulic system and electrical system are accomplished respectively through studying the control process and energy transfer, and then LVP models of the pressure and flow rate control is obtained through the electro-hydraulic models integration. Thirdly, dynamic characteristics of HPU are obtained by the model simulating within bounded closed sets of varying parameters. Finally, the developed HPU is tested in a deep-sea imitating hull, and the experimental results are well consistent with the theoretical analysis outcomes, which clearly declare that the LVP modeling is a rational way to foresee dynamic performances of HPU. The research approach and model analysis results can be applied to the predictions of working properties and product designs for other deep-sea hydraulic pump.展开更多
In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoi...In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images.展开更多
Aim To build an adaptive fuzzy neural controller and simulate it. Methods\ Fuzzy logic and back propagation(BP) algorithm are combined to utilize their advantages while avoiding the disadvantages. Results and Conclus...Aim To build an adaptive fuzzy neural controller and simulate it. Methods\ Fuzzy logic and back propagation(BP) algorithm are combined to utilize their advantages while avoiding the disadvantages. Results and Conclusion\ Simulation results of the third order plant with disturbances and dead times show the validity of the presented controller. The presented controller can control cases that preceding controllers were unable to control.展开更多
A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a p...A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a polytopic linear parameter varying (LPV) model is developed to represent the complex nonlinear longitudinal dynamics of the FAHV. Secondly, based on the obtained polytopic LPV model, the flight envelope is divided into four smaller subregions, and four gain-scheduled controllers are designed for these parameter subregions. Then, by the defined switching characteristic function, these gain-scheduled controllers are switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a given tracking error performance criterion. The condition of gain-scheduled switching controller synthesis is given in terms of linear matrix inequalities (LMIs) which can be easily solved by using standard software packages. Finally, simulation results show the effectiveness of the presented method.展开更多
In this paper, asymmetric Gaussian weighting functions are introduced for the identification of linear parameter varying systems by utilizing an input-output multi-model structure. It is not required to select operati...In this paper, asymmetric Gaussian weighting functions are introduced for the identification of linear parameter varying systems by utilizing an input-output multi-model structure. It is not required to select operating points with uniform spacing and more flexibility is achieved. To verify the effectiveness of the proposed approach, several weighting functions, including linear, Gaussian and asymmetric Gaussian weighting functions, are evaluated and compared. It is demonstrated through simulations with a continuous stirred tank reactor model that the oroposed aonroach nrovides more satisfactory aonroximation.展开更多
This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(H...This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.展开更多
The methods of multiple scales and approximate potential are used to study pendulums with linear damping and variable length. According to the order of the coefficient of friction compared with that of the slowly vary...The methods of multiple scales and approximate potential are used to study pendulums with linear damping and variable length. According to the order of the coefficient of friction compared with that of the slowly varying parameter of length, three different cases are discussed in details. Asymptotic analytical expressions of amplitude, frequency and solution are obtained. The method of approximate potential makes the results effective for large oscillations. A modified multiple scales method is used to get more accurate leading order approximations when the coefficient friction is not small. Comparisons are also made with numerical results to show the efficiency of the present method.展开更多
A linear parameter varying(LPV)flight dynamics model(FDM)is proposed to cater for atmospheric disturbance analysis in special flight conditions.A novel FDM which is capable of addressing the influence of turbulent win...A linear parameter varying(LPV)flight dynamics model(FDM)is proposed to cater for atmospheric disturbance analysis in special flight conditions.A novel FDM which is capable of addressing the influence of turbulent wind is derived under the wind frame.An affine parameter dependent LPV model with wind effects is built based on function substitution method.The optimal solution for the decomposing function of the LPV FDM is obtained by genetic algorithm(GA).The analysis of dynamic response indicates that the genetic-optimized LPV FDM approximates the nonlinear FDM evidently,since it identifies the instantaneous dynamics and flight states varying in a wide range.The simulations of approach and landing against wind shear show that the genetic-optimized LPV FDM captures the instantaneous dynamic response when flying through turbulent wind,indicating that the LPV model can be further applied to turbulent wind special flight analysis and control law design.展开更多
The problem of linear parameter varying (LPV) system identification is considered based on the locally weighted technique which provides estimation of the LPV model parameters at each distinct data time point by giv...The problem of linear parameter varying (LPV) system identification is considered based on the locally weighted technique which provides estimation of the LPV model parameters at each distinct data time point by giving large weights to measurements that are "close" to the current time point and small weights to measurements "far" from the current time point. Issues such as choice of distance function, weighting function and bandwidth selection are discussed. The developed method is easy to implement and simulation results illustrate its efficiency.展开更多
Accurate numerical prediction of frosting patterns is essential for the efficient layout and timing defrosting of heat exchangers under frosting conditions.In this study,a numerical model is developed to predict the s...Accurate numerical prediction of frosting patterns is essential for the efficient layout and timing defrosting of heat exchangers under frosting conditions.In this study,a numerical model is developed to predict the spatio-temporal frosting habits on curved surfaces in combination with the correlations of frost density and thermal conductivity.In the model,frost melting is considered.After verification,the frosting and heat transfer characteristics along the flow path are investigated under various structural and operating conditions.Frost thickness along the path is mainly affected by the cooling surface temperature,while the heat and mass transfer rates are strongly correlated with the humidity ratio.The proportions of latent heat and sensible heat are distributed more unevenly in parallel flow case than in counter flow case.Frost deposition is facilitated by a smaller radius of curvature of the cooling surface.More uniform frosting characteristics along the path and smaller heat transfer obstruction are presented with a smaller length-to-height ratio of the flow path.展开更多
This paper investigates the adaptive stabilization for a class of uncertain PDE-ODE cascaded systems. Remarkably, the PDE subsystem allows unknown control coefficient and spatially varying parameter, and only its one ...This paper investigates the adaptive stabilization for a class of uncertain PDE-ODE cascaded systems. Remarkably, the PDE subsystem allows unknown control coefficient and spatially varying parameter, and only its one boundary value is measurable. This renders the system in question more general and practical, and the control problem more challenging. To solve the problem,an invertible transformation is first introduced to change the system into an observer canonical form,from which a couple of filters are constructed to estimate the unmeasurable states. Then, by adaptive technique and infinite-dimensional backstepping method, an adaptive controller is constructed which guarantees that all states of the resulting closed-loop system are bounded while the original system states converging to zero. Finally, a numerical simulation is provided to illustrate the effectiveness of the proposed method.展开更多
A high contrast to noise ratio(CNR)is always desirable for contrast-enhanced computed tomography angiography(CTA).To ensure a high CNR of the vascular images in CTA and potentially reduce the radiation exposure and co...A high contrast to noise ratio(CNR)is always desirable for contrast-enhanced computed tomography angiography(CTA).To ensure a high CNR of the vascular images in CTA and potentially reduce the radiation exposure and contrast usage,an adaptive bolus chasing method is proposed and evaluated compared to the existing constant-speed method.The proposed method is based on a local time and space parameter varying model of the contrast bolus.Optimal scan time for the next segment of the vasculature is estimated and predicted in real time and guides the computed tomography(CT)scanner table movement that guarantees that each segment of the vasculature is scanned with the maximum possible enhancement.Simulations and experimental results show that the proposed bolus chasing method outperforms the conventional constant-speed method substantially.展开更多
In view of the variable parameters that affect the transient stability of electromagnetic torque and mechanical torque balance in AC-DC system,and the uncertainty of wind power in large-scale interconnection of wind f...In view of the variable parameters that affect the transient stability of electromagnetic torque and mechanical torque balance in AC-DC system,and the uncertainty of wind power in large-scale interconnection of wind farm.This paper proposes a linear parameter varying(LPV)robust feedback control method for transient stability of interconnected systems.The proposed LPV robust feedback control method uses the DC channel power control and the mechanical power in the interconnected system as the control target to improve the transient stability of the interconnected system with wind farm channel.Firstly,aiming at the strong nonlinear characteristics of the interconnected system,the power balance and the wind power output uncertainty in the transient process,the transient process is designed as a linear model of variable parameters.Then,the H∞robust output feedback controller is designed according to the LPV model.The transient stability control strategy topology and transfer function of the interconnected system are proposed.Finally,the proposed scheme is verified by an interconnected system formed by four equal-value grids through AC and DC lines in a digital simulation platform.The results show that the LPV robust feedback control model proposed in this paper has better response characteristics and transient stability control effects for interconnected systems with wind power weak sendingend system.展开更多
This article develops a polytopic linear pa- rameter varying (LPV) model and presents a non-fragile H2 gain-scheduled control for a flexible air-breathing hypersonic vehicle (FAHV). First, the polytopic LPV model ...This article develops a polytopic linear pa- rameter varying (LPV) model and presents a non-fragile H2 gain-scheduled control for a flexible air-breathing hypersonic vehicle (FAHV). First, the polytopic LPV model of the FAHV can be obtained by using Jacobian linearization and tensor-product (TP) model transfor- mation approach, simulation verification illustrates that the polytopic LPV model captures the local nonlinear- ities of the original nonlinear system. Second, based on the developed polytopic LPV model, a non-fragile gain- scheduled control method is proposed in order to reduce the fragility encountered in controller implementation, a convex optimisation problem with linear matrix in- equalities (LMIs) constraints is formulated for designing a velocity and altitude tracking controller, which guar- antees//2 control performance index. Finally, numerical simulations have demonstrated the effectiveness of the proposed approach.展开更多
文摘An LMS-like algorithm is applied for estimating the time-varying parameter theta-n in the linear model y(n) = phi-n-tau-theta-n + upsilon-n, which is general in the sense that none of the probabilistic properties such as stationarity, Markov property, independence and ergodicity is imposed on any of the processes {y(n)}, {phi-n}, {theta-n} and {upsilon-n}. It is shown that the alpha-th moment of the estimation error is of order of the alpha-th moment of the observation noise and the parameter variation w(n) change in equivalence theta-n - theta-n-1.
基金supported by NNSF of China(#11171260)RFDP of Higher Education of China(#20100141110054)
文摘In this article, we establish the Bessel polynomials with varying large negative parameters and discuss their orthogonality based on the generalized Bessel polynomials. By using the Riemann-Hilbert boundary value problem on the positive real axis, we get the Riemann-Hilbert characterization of the main Bessel polynomials with varying large negative parameters.
基金supported by a Hong Kong Research Grant Council GRF Grant,and a Hong Kong Baptist University FRG Grant.
文摘Pattern formations by Gierer-Meinhardt(GM)activator-inhibitor model are considered in this paper.By linear analysis,critical value of bifurcation parameter can be evaluated to ensure Turing instability.Numerical simulations are tested by using second order semi-implicit backward difference methods for time discretization and the meshless Kansa method for spatially discretization.We numerically show the convergence of our algorithm.Pattern transitions in irregular domains are shown.We also provide various parameter settings on some irregular domains for different patterns appeared in nature.To further simulate patterns in reality,we construct different kinds of animal type domains and obtain desired patterns by applying proposed parameter settings.
基金Supported by the National Natural Science Foundation of China(No.52075468)General Project of Natural Science Foundation of Hebei Prov-ince(No.E2020203052)+2 种基金Youth Fund Project of Scientific Research Project of Hebei University(No.QN202013)Basic Innovation Scientif-ic Research Cultivation Project of Yanshan University(No.2021LGZD003)the Shaanxi Key Laboratory of Hydraulic Technology Fund(No.YYJS2022KF14).
文摘Magnetic-liquid double suspension bearing(MLDSB)is mainly supported by electromagnetic suspension and supplemented by hydrostatic supporting.Its bearing capacity and stiffness can be greatly improved,and then it is suitable for the occasions of medium speed,heavy load.When the bearing system is excited by periodic force,the flow q and current i regulated by the double-closed-loop control mechanism change periodically.Then the risk of parametric resonance in MLDSB is greatly aggravated by the change of the parameter system,which seriously affects its operation stabil-ity and reliability.Therefore,this paper intends to study the resonance characteristics of the parame-ter system of MLDSB.Firstly,Marshall-Duffing equation of the parametric system is established by taking the flow q and the current i as variables respectively.Then,by using the asymptotic method,the occurrence condition and variation rule of the principal,1/2 Harmonic and 1/3 Harmonic para-metric resonance are solved.The results show that only the 1/2 Harmonic resonance of the flow q parameter varying system occurs accompanied by the resonance condition of high frequency.The principal,1/2 Harmonic and 1/3 Harmonic parametric resonance of the current i occur accompanied by the resonance condition of high frequency.And the 1/2 Harmonic resonance of the current i oc-curs accompanied by the non-single value bifurcation and dynamic bifurcation.The paper can pro-vide theoretical reference for the parameter design and stable operation of MLDSB.
基金supported in part by the National Natural Science Foundation of China(62103319,62073053,61773396)。
文摘For constrained linear parameter varying(LPV)systems,this survey comprehensively reviews the literatures on output feedback robust model predictive control(OFRMPC)over the past two decades from the aspects on motivations,main contributions,and the related techniques.According to the types of state observer systems and scheduling parameters of LPV systems,different kinds of OFRMPC approaches are summarized and compared.The extensions of OFRMPC for LPV systems to other related uncertain systems are also investigated.The methods of dealing with system uncertainties and constraints in different kinds of OFRMPC optimizations are given.Key issues on OFRMPC optimizations for LPV systems are discussed.Furthermore,the future research directions on OFRMPC for LPV systems are suggested.
文摘Assessment of the Hubble parameter as an indicator of the expansion rate of the universe holds a central position in the field of astronomy. From its initial estimate of about 500 km<span style="white-space:nowrap;">⋅</span>sec<sup>-1</sup><span style="white-space:nowrap;">⋅</span>parsc<sup>-1</sup>, this value had been steadily amended as the observational tools became more accurate and precise. Despite this, a gap remains between the value of observations relating to local and nonlocal estimations of the Hubble parameter that gave rise to what became known as the Hubble tension. This tension is addressed here while dealing with space fabric as a cosmological fluid that undergoes transition.
基金supported by the National High Technology Research and Development Program of China (863 Program,Grant Nos. 2006AA09Z226 and 2012AA091104)the Special Fund for Basic Scientific Research of Central Colleges,Chang’an University (Grant No. CHD2011JC151)
文摘A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tests by simulating deep-sea environment have many disadvantages, such as expensive cost, long test cycles, and difficult to achieve low-temperature simulation, which is only used as a supplementary means for confirmatory experiment. This paper proposes a novel theoretical approach based on the linear varying parameters (LVP) modeling to foresee the dynamic performances of the driving unit. Firstly, based on the varying environment features, dynamic expressions of the compressibility and viscosity of hydranlic oil are derived to reveal the fluid performances changing. Secondly, models of hydraulic system and electrical system are accomplished respectively through studying the control process and energy transfer, and then LVP models of the pressure and flow rate control is obtained through the electro-hydraulic models integration. Thirdly, dynamic characteristics of HPU are obtained by the model simulating within bounded closed sets of varying parameters. Finally, the developed HPU is tested in a deep-sea imitating hull, and the experimental results are well consistent with the theoretical analysis outcomes, which clearly declare that the LVP modeling is a rational way to foresee dynamic performances of HPU. The research approach and model analysis results can be applied to the predictions of working properties and product designs for other deep-sea hydraulic pump.
基金The National Natural Science Foundation of China(No.60702069)the Research Project of Department of Education of Zhe-jiang Province (No.20060601)+1 种基金the Natural Science Foundation of Zhe-jiang Province (No.Y1080851)Shanghai International Cooperation onRegion of France (No.06SR07109)
文摘In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images.
文摘Aim To build an adaptive fuzzy neural controller and simulate it. Methods\ Fuzzy logic and back propagation(BP) algorithm are combined to utilize their advantages while avoiding the disadvantages. Results and Conclusion\ Simulation results of the third order plant with disturbances and dead times show the validity of the presented controller. The presented controller can control cases that preceding controllers were unable to control.
基金supported by the National Outstanding Youth Science Foundation(61125306)the National Natural Science Foundation of Major Research Plan(91016004+2 种基金61034002)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20110092110020)the Scientific Research Foundation of Graduate School of Southeast University(YBJJ1103)
文摘A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a polytopic linear parameter varying (LPV) model is developed to represent the complex nonlinear longitudinal dynamics of the FAHV. Secondly, based on the obtained polytopic LPV model, the flight envelope is divided into four smaller subregions, and four gain-scheduled controllers are designed for these parameter subregions. Then, by the defined switching characteristic function, these gain-scheduled controllers are switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a given tracking error performance criterion. The condition of gain-scheduled switching controller synthesis is given in terms of linear matrix inequalities (LMIs) which can be easily solved by using standard software packages. Finally, simulation results show the effectiveness of the presented method.
基金Supported by the National Natural Science Foundation of China(21076179,61104008)National Basic Research Program of China(2012CB720500)
文摘In this paper, asymmetric Gaussian weighting functions are introduced for the identification of linear parameter varying systems by utilizing an input-output multi-model structure. It is not required to select operating points with uniform spacing and more flexibility is achieved. To verify the effectiveness of the proposed approach, several weighting functions, including linear, Gaussian and asymmetric Gaussian weighting functions, are evaluated and compared. It is demonstrated through simulations with a continuous stirred tank reactor model that the oroposed aonroach nrovides more satisfactory aonroximation.
基金supported by the National Natural Science Foundation of China(6120300761304239+1 种基金61503392)the Natural Science Foundation of Shaanxi Province(2015JQ6213)
文摘This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.
文摘The methods of multiple scales and approximate potential are used to study pendulums with linear damping and variable length. According to the order of the coefficient of friction compared with that of the slowly varying parameter of length, three different cases are discussed in details. Asymptotic analytical expressions of amplitude, frequency and solution are obtained. The method of approximate potential makes the results effective for large oscillations. A modified multiple scales method is used to get more accurate leading order approximations when the coefficient friction is not small. Comparisons are also made with numerical results to show the efficiency of the present method.
基金supported by the National Natural Science Foundation of China (No.U1533120)the Aeronautical Science Foundation of China (No.20158052057)the Fundamental Research Funds for the Central Universities(No.NS2015066)
文摘A linear parameter varying(LPV)flight dynamics model(FDM)is proposed to cater for atmospheric disturbance analysis in special flight conditions.A novel FDM which is capable of addressing the influence of turbulent wind is derived under the wind frame.An affine parameter dependent LPV model with wind effects is built based on function substitution method.The optimal solution for the decomposing function of the LPV FDM is obtained by genetic algorithm(GA).The analysis of dynamic response indicates that the genetic-optimized LPV FDM approximates the nonlinear FDM evidently,since it identifies the instantaneous dynamics and flight states varying in a wide range.The simulations of approach and landing against wind shear show that the genetic-optimized LPV FDM captures the instantaneous dynamic response when flying through turbulent wind,indicating that the LPV model can be further applied to turbulent wind special flight analysis and control law design.
基金Supported by the National Natural Science Foundation of China(10826100, 10901139 and 60964005)
文摘The problem of linear parameter varying (LPV) system identification is considered based on the locally weighted technique which provides estimation of the LPV model parameters at each distinct data time point by giving large weights to measurements that are "close" to the current time point and small weights to measurements "far" from the current time point. Issues such as choice of distance function, weighting function and bandwidth selection are discussed. The developed method is easy to implement and simulation results illustrate its efficiency.
基金the National Natural Science Founda-tion of China(Grant No.:51976150)the Fundamental Research Funds for the Central Universities,and the Youth Innovation Team of Shaanxi Universities.
文摘Accurate numerical prediction of frosting patterns is essential for the efficient layout and timing defrosting of heat exchangers under frosting conditions.In this study,a numerical model is developed to predict the spatio-temporal frosting habits on curved surfaces in combination with the correlations of frost density and thermal conductivity.In the model,frost melting is considered.After verification,the frosting and heat transfer characteristics along the flow path are investigated under various structural and operating conditions.Frost thickness along the path is mainly affected by the cooling surface temperature,while the heat and mass transfer rates are strongly correlated with the humidity ratio.The proportions of latent heat and sensible heat are distributed more unevenly in parallel flow case than in counter flow case.Frost deposition is facilitated by a smaller radius of curvature of the cooling surface.More uniform frosting characteristics along the path and smaller heat transfer obstruction are presented with a smaller length-to-height ratio of the flow path.
基金supported by the National Natural Science Foundations of China under Grant Nos.61821004,61873146 and 61773332the Special Fund of Postdoctoral Innovation Projects in Shandong Province under Grant No.201703012。
文摘This paper investigates the adaptive stabilization for a class of uncertain PDE-ODE cascaded systems. Remarkably, the PDE subsystem allows unknown control coefficient and spatially varying parameter, and only its one boundary value is measurable. This renders the system in question more general and practical, and the control problem more challenging. To solve the problem,an invertible transformation is first introduced to change the system into an observer canonical form,from which a couple of filters are constructed to estimate the unmeasurable states. Then, by adaptive technique and infinite-dimensional backstepping method, an adaptive controller is constructed which guarantees that all states of the resulting closed-loop system are bounded while the original system states converging to zero. Finally, a numerical simulation is provided to illustrate the effectiveness of the proposed method.
基金The work was supported partially by NSF ECS-0555394 and NIH/NIBIB EB004287.
文摘A high contrast to noise ratio(CNR)is always desirable for contrast-enhanced computed tomography angiography(CTA).To ensure a high CNR of the vascular images in CTA and potentially reduce the radiation exposure and contrast usage,an adaptive bolus chasing method is proposed and evaluated compared to the existing constant-speed method.The proposed method is based on a local time and space parameter varying model of the contrast bolus.Optimal scan time for the next segment of the vasculature is estimated and predicted in real time and guides the computed tomography(CT)scanner table movement that guarantees that each segment of the vasculature is scanned with the maximum possible enhancement.Simulations and experimental results show that the proposed bolus chasing method outperforms the conventional constant-speed method substantially.
基金This study was supported in part by the National Key R&D Program of China(2017YFB0902100).
文摘In view of the variable parameters that affect the transient stability of electromagnetic torque and mechanical torque balance in AC-DC system,and the uncertainty of wind power in large-scale interconnection of wind farm.This paper proposes a linear parameter varying(LPV)robust feedback control method for transient stability of interconnected systems.The proposed LPV robust feedback control method uses the DC channel power control and the mechanical power in the interconnected system as the control target to improve the transient stability of the interconnected system with wind farm channel.Firstly,aiming at the strong nonlinear characteristics of the interconnected system,the power balance and the wind power output uncertainty in the transient process,the transient process is designed as a linear model of variable parameters.Then,the H∞robust output feedback controller is designed according to the LPV model.The transient stability control strategy topology and transfer function of the interconnected system are proposed.Finally,the proposed scheme is verified by an interconnected system formed by four equal-value grids through AC and DC lines in a digital simulation platform.The results show that the LPV robust feedback control model proposed in this paper has better response characteristics and transient stability control effects for interconnected systems with wind power weak sendingend system.
文摘This article develops a polytopic linear pa- rameter varying (LPV) model and presents a non-fragile H2 gain-scheduled control for a flexible air-breathing hypersonic vehicle (FAHV). First, the polytopic LPV model of the FAHV can be obtained by using Jacobian linearization and tensor-product (TP) model transfor- mation approach, simulation verification illustrates that the polytopic LPV model captures the local nonlinear- ities of the original nonlinear system. Second, based on the developed polytopic LPV model, a non-fragile gain- scheduled control method is proposed in order to reduce the fragility encountered in controller implementation, a convex optimisation problem with linear matrix in- equalities (LMIs) constraints is formulated for designing a velocity and altitude tracking controller, which guar- antees//2 control performance index. Finally, numerical simulations have demonstrated the effectiveness of the proposed approach.