Background:Circular RNAs(circRNAs)have been recognized as significant regulators of pulmonary hypertension(PH);however,the differential expression and function of circRNAs in different vascular cells under hypoxia rem...Background:Circular RNAs(circRNAs)have been recognized as significant regulators of pulmonary hypertension(PH);however,the differential expression and function of circRNAs in different vascular cells under hypoxia remain unknown.Here,we identified co-differentially expressed circRNAs and determined their putative roles in the proliferation of pulmonary artery smooth muscle cells(PASMCs),pulmonary microvascular endothelial cells(PMECs),and pericytes(PCs)under hypoxia.Methods:Whole transcriptome sequencing was performed to analyze the differential expression of circRNAs in three different vascular cell types.Bioinformatic analysis was used to predict their putative biological function.Quantitative real-time polymerase chain reaction,Cell Counting Kit-8,and EdU Cell Proliferation assays were carried out to determine the role of circular postmeiotic segregation 1(circPMS1)as well as its potential sponge mechanism in PASMCs,PMECs,and PCs.Results:PASMCs,PMECs,and PCs exhibited 16,99,and 31 differentially expressed circRNAs under hypoxia,respectively.CircPMS1 was upregulated in PASMCs,PMECs,and PCs under hypoxia and enhanced the proliferation of vascular cells.CircPMS1may upregulate DEP domain containing 1(DEPDC1)and RNA polymerase II subunit D expression by targeting microRNA-432-5p(miR-432-5p)in PASMCs,upregulate MAX interactor 1(MXI1)expression by targeting miR-433-3p in PMECs,and upregulate zinc finger AN1-type containing 5(ZFAND5)expression by targeting miR-3613-5p in PCs.Conclusions:Our results suggest that circPMS1 promotes cell proliferation through the miR-432-5p/DEPDC1 or miR-432-5p/POL2D axis in PASMCs,through the miR-433-3p/MXI1 axis in PMECs,and through the miR-3613-5p/ZFAND5 axis in PCs,which provides putative targets for the early diagnosis and treatment of PH.展开更多
Endogenous neural stem cells become "activated" after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relatio...Endogenous neural stem cells become "activated" after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relationships between neural stem cells and hypoxia-inducible factor-1α and vascular endothelial growth factor expression in a photothromobotic rat stroke model using immunohistochemistry and western blot analysis. We also evaluated the chronological changes of neural stem cells by 5-bromo-2′-deoxyuridine(BrdU) incorporation. Hypoxia-inducible factor-1α expression was initially increased from 1 hour after ischemic injury, followed by vascular endothelial growth factor expression. Hypoxia-inducible factor-1α immunoreactivity was detected in the ipsilateral cortical neurons of the infarct core and peri-infarct area. Vascular endothelial growth factor immunoreactivity was detected in bilateral cortex, but ipsilateral cortex staining intensity and numbers were greater than the contralateral cortex. Vascular endothelial growth factor immunoreactive cells were easily found along the peri-infarct area 12 hours after focal cerebral ischemia. The expression of nestin increased throughout the microvasculature in the ischemic core and the peri-infarct area in all experimental rats after 24 hours of ischemic injury. Nestin immunoreactivity increased in the subventricular zone during 12 hours to 3 days, and prominently increased in the ipsilateral cortex between 3–7 days. Nestin-labeled cells showed dual differentiation with microvessels near the infarct core and reactive astrocytes in the peri-infarct area. BrdU-labeled cells were increased gradually from day 1 in the ipsilateral subventricular zone and cortex, and numerous BrdU-labeled cells were observed in the peri-infarct area and non-lesioned cortex at 3 days. BrdU-labeled cells rather than neurons, were mainly co-labeled with nestin and GFAP. Early expressions of hypoxia-inducible factor-1α and vascular endothelial growth factor after ischemia made up the microenvironment to increase the neuronal plasticity of activated endogenous neural stem cells. Moreover, neural precursor cells after large-scale cortical injury could be recruited from the cortex nearby infarct core and subventricular zone.展开更多
AIMTo determine whether small interfering RNA (siRNA) of PGC-1α could inhibit vascular endothelial growth factor (VEGF) expression and tube formation in human retinal vascular endothelial cells (hRVECs).ME...AIMTo determine whether small interfering RNA (siRNA) of PGC-1α could inhibit vascular endothelial growth factor (VEGF) expression and tube formation in human retinal vascular endothelial cells (hRVECs).METHODShRVECs transfected with peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) siRNA were incubated for 24h and then placed into a normoxic (20%, O<sub>2</sub>) or hypoxic (1%, O<sub>2</sub>) environment for another 16h. PGC-1α mRNA and protein levels were detected by real-time PCR and Western blot. VEGF mRNA and protein levels were detected by real-time PCR and ELISA. Cell proliferation was evaluated by BrdU incorporation assay. Forty-eight hours after siRNA transfection, hRVECs were planted into Matrigel-coated plates and cultured under normoxic (20%, O<sub>2</sub>) or hypoxic (1%, O<sub>2</sub>) conditions for another 48h. The tube formation of hRVECs was observed under an optical microscope and quantified by counting the number of branch points and calculating the total tube length.RESULTSPGC-1α mRNA and protein levels were significantly reduced by PGC-1α siRNA, and VEGF mRNA and protein levels also decreased significantly. The percentage of BrdU-labeled cells in siPGC-1α groups were significantly decreased compared with control siRNA groups under normoxia and hypoxia in cell proliferation assay. In the tube formation assay, PGC-1α siRNA treated cells formed significantly fewer tubes.CONCLUSIONBlocking PGC-1α expression can inhibit VEGF expression in hRVECs and inhibit their ability to form tubes under both normoxic and hypoxic conditions.展开更多
Hypoxia and transforming growth factor-β1 (TGF-β1) increase vascular endothelial growth factor A (VEGFA) expression in a number of malignancies. This effect of hypoxia and TGF-β1 might be responsible for tumor ...Hypoxia and transforming growth factor-β1 (TGF-β1) increase vascular endothelial growth factor A (VEGFA) expression in a number of malignancies. This effect of hypoxia and TGF-β1 might be responsible for tumor progression and metastasis of advanced prostate cancer. In the present study, TGF-β1 was shown to induce VEGFA165 secretion from both normal cell lines (HPV7 and RWPE1) and prostate cancer cell lines (DU 145 and PC3). Conversely, hypoxia-stimulated VEGFA165 secretion was observed only in prostate cancer cell lines. Hypoxia induced TGF-β1 expression in PC3 prostate cancer cells, and the TGF-β1 type I receptor (ALK5) kinase inhibitor partially blocked hypoxia-mediated VEGFA16s secretion. This effect of hypoxia provides a novel mechanism to increase VEGFA expression in prostate cancer cells. Although autocrine signaling of VEGFA has been implicated in prostate cancer progression and metastasis, the associated mechanism is poorly characterized. VEGFA activity is mediated via VEGF receptor (VEGFR) 1 (Fit-l) and 2 (FIk-I/KDR). Whereas VEGFR-1 mRNA was detected in normal prostate epithelial cells, VEGFR-2 mRNA and VEGFR protein were expressed only in PC3 cells. VEGFA165 treatment induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERKI/2) in PC3 cells but not in HPV7 cells, suggesting that the autocrine function of VEGFA may be uniquely associated with prostate cancer. Activation of VEGFR-2 by VEGFA165 was shown to enhance migration of PC3 cells. A similar effect was also observed with endogenous VEGFA induced by TGF-β1 and hypoxia. These findings illustrate that an autocrine loop of VEGFA via VEGFR-2 is critical for the tumorigenic effects of TGF-β1 and hypoxia on metastatic prostate cancers.展开更多
AIM:To investigate the effects of fibrillin-1(FBN1)deletion on the integrity of retina-blood barrier function and the apoptosis of vascular endothelial cells under diabetic conditions.METHODS:Streptozotocin(STZ)-induc...AIM:To investigate the effects of fibrillin-1(FBN1)deletion on the integrity of retina-blood barrier function and the apoptosis of vascular endothelial cells under diabetic conditions.METHODS:Streptozotocin(STZ)-induced diabetic mice were used to simulate the diabetic conditions of diabetic retinopathy(DR)patients,and FBN1 expression was detected in retinas from STZ-diabetic mice and controls.In the Gene Expression Omnibus(GEO)database,the GSE60436 dataset was selected to analyze FBN1 expressions in fibrovascular membranes from DR patients.Using lentivirus to knock down FBN1 levels,vascular leakage and endothelial barrier integrity were detected by Evans blue vascular permeability assay,fluorescein fundus angiography(FFA)and immunofluorescence labeled with tight junction marker in vivo.High glucose-induced monkey retinal vascular endothelial cells(RF/6A)were used to investigate effects of FBN1 on the cells in vitro.The vascular endothelial barrier integrity and apoptosis were detected by trans-endothelial electrical resistance(TEER)assay and flow cytometry,respectively.RESULTS:FBN1 mRNA expression was increased in retinas of STZ-induced diabetic mice and fibrovascular membranes of DR patients(GSE60436 datasets)using RNA-seq approach.Besides,knocking down of FBN1 by lentivirus intravitreal injection significantly inhibited the vascular leakage compared to STZ-DR group by Evans blue vascular permeability assay and FFA detection.Expressions of tight junction markers in STZ-DR mouse retinas were lower than those in the control group,and knocking down of FBN1 increased the tight junction levels.In vitro,30 mmol/L glucose could significantly inhibit viability of RF/6A cells,and FBN1 mRNA expression was increased under 30 mmol/L glucose stimulation.Down-regulation of FBN1 reduced high glucose(HG)-stimulated retinal microvascular endothelial cell permeability,increased TEER,and inhibited RF/6A cell apoptosis in vitro.CONCLUSION:The expression level of FBN1 increases in retinas and vascular endothelial cells under diabetic conditions.Down-regulation of FBN1 protects the retina of early diabetic rats from retina-blood barrier damage,reduce vascular leakage,cell apoptosis,and maintain vascular endothelial cell barrier function.展开更多
Morphological and functional abnormalities of vascular endothelial cells(VECs) are risk factors of ischemiareperfusion in skin flaps.Signaling pathway mediated by interleukin-1 receptor(IL-1 R) is essential to hypoxia...Morphological and functional abnormalities of vascular endothelial cells(VECs) are risk factors of ischemiareperfusion in skin flaps.Signaling pathway mediated by interleukin-1 receptor(IL-1 R) is essential to hypoxia/reoxygenation(H/R) injury of VECs.While the TIR/BB-loop mimetic(AS-1) disrupts the interaction between IL-1 R and myeloid differentiation primary-response protein 88(MyD88),its role in the VECs dysfunction under H/R is unclear.In this study,we first showed that there was an infiltration of inflammatory cells and the apoptosis of VECs by using a skin flap section from patients who received flap transplantation.We then showed that the H/R treatment induced apoptosis and loss of cell migration of endothelial cell line H926 were attenuated by AS-1.Furthermore,our data suggested that AS-1 inhibits the interaction between IL-1 R and MyD88,and subsequent phosphorylation of IκB and p38 pathway,as well as the nuclear localization of NF-κB subunit p65/p50.Thus,this study indicated that the protective role of AS-1 in H/R induced cellular injury may be due to the AS-1 mediated down-regulation of IL-1 R signaling pathway.展开更多
Aim Alpha7 nicotinic acetylcholine receptor (α7nAChR), a subtype of nAChR regulating neurotrans- mission in central nervous system, is an essential regulator of cholinergic antiinflammatory pathway in periphery. Th...Aim Alpha7 nicotinic acetylcholine receptor (α7nAChR), a subtype of nAChR regulating neurotrans- mission in central nervous system, is an essential regulator of cholinergic antiinflammatory pathway in periphery. The present study was to determine the effects of activation of α7nAChR on oxidant stress-induced injury in endo- thelial cells. Methods Cultured human umbilical vein endothelial cells were treated with H202 (400 μmol · L^-1) or H202plus PNU-282987 ( 10 μmol · L^-1 ). Cell viability and membrane integrity were measured. AnnexinV + PI assay, immunoblotting of bcl-2, bax and cleaved caspase-3, and immunofluorescence of apoptosis inducing factor (AIF) were performed to evaluate apoptosis. Protein expression of vascular peroxidase-1 ( VPO-1 ) and phosphor- JNK were measured by immunoblotting. Results Activation of α7nAChR by a selective agonist PNU-282987 pre-vented H202-indced decrease of cell viability and increase of lactate dehydrogenase release. Activation of α7nAChR markedly reduced cell apoptosis and intracellular oxidative stress level. Moreover, activation of α7nAChR reduced H2 02 -induced VPO-1 protein upregulation and JNK1/2 phosphorylation. The inhibitory effect of α7nAChR activa- tion on VPO-1 was blocked by JNK inhibitor SP600125. In addition, pretreatment of α7nAChR antagonist methyl- lycaconitine blocked the cytoprotective effect of PNU-282987. Conclusion These results provide the first evidence that activation of α7nAChR protects against oxidant stress-induced damage by suppressing VPO-1 in a JNK signa- ling pathway-dependent manner in endothelial cells.展开更多
Background and Objective In-stent restenosis(ISR)remains a major limitation of percutaneous coronary intervention despite improvements in stent design and pharmacological agents,whereas the mechanism of ISR has not be...Background and Objective In-stent restenosis(ISR)remains a major limitation of percutaneous coronary intervention despite improvements in stent design and pharmacological agents,whereas the mechanism of ISR has not been fully clarified.In the present study,we sought to investigate the potential association of serum soluble TREM-1(sTREM-1)levels with the incidence of ISR.The role of TREM-1 was evaluated in cultured vascular smooth muscle cells(VSMCs).展开更多
Observation of stilbene dropping pill and yiqi drug-containing serum influence mechanism of vascular smooth muscle proliferation, cell cycle and Cyclin D1 and CDK4Choose male SD rats were randomly divided into 2 gr...Observation of stilbene dropping pill and yiqi drug-containing serum influence mechanism of vascular smooth muscle proliferation, cell cycle and Cyclin D1 and CDK4Choose male SD rats were randomly divided into 2 groups, lavage qishen yiqi pill and the gastric saline group,extract the drug-containing serum and normal serum;To set the two groups of serum respectively different concentrations,concentration in different time by CCK8 detection effects on vascular smooth muscle cell proliferation, select best concentration and action time.Flow cytometry instrument and high-throughput screening detect serum medicated effect on vascular smooth muscle cell cycle;Western blot detect the drug-containing serum of cell cycle protein Cyclin D1 and CDK4 expression.Result is 5%, 10% medicated serum inhibits cell proliferation significantly higher than the normal serum concentrations of same within 24 h, 48 h.G1 phase cells 5% medicated serum group was obviously higher than that of 5% in normal group (P<005), serum and cell proliferation index significantly less than 5% normal serum group (P<005),At the same time, Cyclin D1 and CDK4 expression significantly less than 5% normal serum group (P<005).Conclusion serum of qishen yiqi pill can inhibit vascular smooth muscle cell proliferation, may be through inhibiting cell cycle protein Cyclin D1 and CDK4 expression, block the cell cycle G1 process is closely related to the role.展开更多
Objective To investigate the effects of insulin-like growth factor-1 (IGF-1) and oxidized low density lipoprotein (oxLDL) on expression ofphosphatase PHLPP 1 in vascular smooth muscle cells (VSMCs). Methods Rabb...Objective To investigate the effects of insulin-like growth factor-1 (IGF-1) and oxidized low density lipoprotein (oxLDL) on expression ofphosphatase PHLPP 1 in vascular smooth muscle cells (VSMCs). Methods Rabbit aortic VSMCs were cultured. VSMCs proliferation ability was determined by measuring cell number and mitochondrial dehydrogenase (MD) activity with MTT assay. Western blot was used to detect the protein expression ofphosphatase PHLPP1. Results IGF-1 (100ug/L) increased cell number and MD activity to 3.02 and 3.59 times of that in control group, oxLDL(501xg/ml) elevated the above two parameters to 2.03 and 2.91 times respectively. Western blot showed that IGF-1 and oxLDL inhibited the expression of PHLPPI to 39.27% and 40.26% of the control group (P〈0.01 ). Conclusion IGF- 1 and oxLDL may enhance the proliferation of VSMCs by decreasing the expression ofphosphatase PHLPP 1.展开更多
Background:Based on previous theoretical studies,JQ-1 as a common inhibitor of bromodomain and extraterminal(BET)proteins was used to treat a variety of diseases.Therefore,we aimed to explore the mechanism of action o...Background:Based on previous theoretical studies,JQ-1 as a common inhibitor of bromodomain and extraterminal(BET)proteins was used to treat a variety of diseases.Therefore,we aimed to explore the mechanism of action of JQ-1 on BET proteins based on bioinformatics and build the novel hypothesis of JQ-1 in treating atherosclerosis(AS)caused by proliferation of vascular smooth muscle cells(VSMCs).Methods:We selected the chip GSE138323 which was searched with the key words“Vascular smooth muscle cell proliferation”in Gene Expression Omnibus(GEO)database,and differential gene analysis was performed between the GRO and JQ-1 groups.Then the top twenty significantly up-regulated genes and the top twenty significantly down-regulated genes were selected for Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis.Thirdly,structured the PPI network of forty differential genes,and the core genes were screened by using the MCC algorithm which in“Cytohubba”plugin in the Cytoscapev3.9.1 software.After that,single gene Gene Set Enrichment Analysis(GSEA)enrichment analysis was performed on the selected core genes in R language.Finally molecular docking validation was performed.Results:Five core genes was selected:H3C2,H3C4,H3C7,H3C10 and AREG.The GO enrichment analysis results showed that there were twenty-five entries in biological process,eight entries in cellular components(CC),and twenty-five entries in molecular function.The KEGG enrichment analysis results showed that there were seven pathways,mainly including systemic lupus erythematosus and external neutrophil trap formation.The GSEA results showed that the five genes were mainly through the regulation of cytochrome P450 metabolism,PPAR signaling pathway and other pathways.The molecular docking results showed that JQ-1 had binding activity with these five genes.Conclusions:JQ-1 may regulate the expression of the genes that H3C2,H3C4,H3C7,H3C10 and AREG,to mainly regulate the genes in cytochrome P450 metabolism,PPAR singling pathway and other pathways,to make some influence in the proliferation of VSMCs,and improved atherosclerotic symptoms due to vascular smooth muscle proliferation,thus treating cardiovascular disease.展开更多
基金Central University Basic Research Fund of China,Grant/Award Number:22120220562National Natural Science Foundation of China,Grant/Award Number:81870044+1 种基金Natural Science Foundation of Shanghai,Grant/Award Number:201409004100 and 21ZR1453800Shanghai Pulmonary Hospital,Grant/Award Number:FKLY20005 and fkzr2320。
文摘Background:Circular RNAs(circRNAs)have been recognized as significant regulators of pulmonary hypertension(PH);however,the differential expression and function of circRNAs in different vascular cells under hypoxia remain unknown.Here,we identified co-differentially expressed circRNAs and determined their putative roles in the proliferation of pulmonary artery smooth muscle cells(PASMCs),pulmonary microvascular endothelial cells(PMECs),and pericytes(PCs)under hypoxia.Methods:Whole transcriptome sequencing was performed to analyze the differential expression of circRNAs in three different vascular cell types.Bioinformatic analysis was used to predict their putative biological function.Quantitative real-time polymerase chain reaction,Cell Counting Kit-8,and EdU Cell Proliferation assays were carried out to determine the role of circular postmeiotic segregation 1(circPMS1)as well as its potential sponge mechanism in PASMCs,PMECs,and PCs.Results:PASMCs,PMECs,and PCs exhibited 16,99,and 31 differentially expressed circRNAs under hypoxia,respectively.CircPMS1 was upregulated in PASMCs,PMECs,and PCs under hypoxia and enhanced the proliferation of vascular cells.CircPMS1may upregulate DEP domain containing 1(DEPDC1)and RNA polymerase II subunit D expression by targeting microRNA-432-5p(miR-432-5p)in PASMCs,upregulate MAX interactor 1(MXI1)expression by targeting miR-433-3p in PMECs,and upregulate zinc finger AN1-type containing 5(ZFAND5)expression by targeting miR-3613-5p in PCs.Conclusions:Our results suggest that circPMS1 promotes cell proliferation through the miR-432-5p/DEPDC1 or miR-432-5p/POL2D axis in PASMCs,through the miR-433-3p/MXI1 axis in PMECs,and through the miR-3613-5p/ZFAND5 axis in PCs,which provides putative targets for the early diagnosis and treatment of PH.
基金supported by the National Research Foundation of Korea Grant funded by the Korean Government,No.NRF-013-2011-1-E00045
文摘Endogenous neural stem cells become "activated" after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relationships between neural stem cells and hypoxia-inducible factor-1α and vascular endothelial growth factor expression in a photothromobotic rat stroke model using immunohistochemistry and western blot analysis. We also evaluated the chronological changes of neural stem cells by 5-bromo-2′-deoxyuridine(BrdU) incorporation. Hypoxia-inducible factor-1α expression was initially increased from 1 hour after ischemic injury, followed by vascular endothelial growth factor expression. Hypoxia-inducible factor-1α immunoreactivity was detected in the ipsilateral cortical neurons of the infarct core and peri-infarct area. Vascular endothelial growth factor immunoreactivity was detected in bilateral cortex, but ipsilateral cortex staining intensity and numbers were greater than the contralateral cortex. Vascular endothelial growth factor immunoreactive cells were easily found along the peri-infarct area 12 hours after focal cerebral ischemia. The expression of nestin increased throughout the microvasculature in the ischemic core and the peri-infarct area in all experimental rats after 24 hours of ischemic injury. Nestin immunoreactivity increased in the subventricular zone during 12 hours to 3 days, and prominently increased in the ipsilateral cortex between 3–7 days. Nestin-labeled cells showed dual differentiation with microvessels near the infarct core and reactive astrocytes in the peri-infarct area. BrdU-labeled cells were increased gradually from day 1 in the ipsilateral subventricular zone and cortex, and numerous BrdU-labeled cells were observed in the peri-infarct area and non-lesioned cortex at 3 days. BrdU-labeled cells rather than neurons, were mainly co-labeled with nestin and GFAP. Early expressions of hypoxia-inducible factor-1α and vascular endothelial growth factor after ischemia made up the microenvironment to increase the neuronal plasticity of activated endogenous neural stem cells. Moreover, neural precursor cells after large-scale cortical injury could be recruited from the cortex nearby infarct core and subventricular zone.
基金Supported by National Natural Science Fundation of China(No.81000387)
文摘AIMTo determine whether small interfering RNA (siRNA) of PGC-1α could inhibit vascular endothelial growth factor (VEGF) expression and tube formation in human retinal vascular endothelial cells (hRVECs).METHODShRVECs transfected with peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) siRNA were incubated for 24h and then placed into a normoxic (20%, O<sub>2</sub>) or hypoxic (1%, O<sub>2</sub>) environment for another 16h. PGC-1α mRNA and protein levels were detected by real-time PCR and Western blot. VEGF mRNA and protein levels were detected by real-time PCR and ELISA. Cell proliferation was evaluated by BrdU incorporation assay. Forty-eight hours after siRNA transfection, hRVECs were planted into Matrigel-coated plates and cultured under normoxic (20%, O<sub>2</sub>) or hypoxic (1%, O<sub>2</sub>) conditions for another 48h. The tube formation of hRVECs was observed under an optical microscope and quantified by counting the number of branch points and calculating the total tube length.RESULTSPGC-1α mRNA and protein levels were significantly reduced by PGC-1α siRNA, and VEGF mRNA and protein levels also decreased significantly. The percentage of BrdU-labeled cells in siPGC-1α groups were significantly decreased compared with control siRNA groups under normoxia and hypoxia in cell proliferation assay. In the tube formation assay, PGC-1α siRNA treated cells formed significantly fewer tubes.CONCLUSIONBlocking PGC-1α expression can inhibit VEGF expression in hRVECs and inhibit their ability to form tubes under both normoxic and hypoxic conditions.
文摘Hypoxia and transforming growth factor-β1 (TGF-β1) increase vascular endothelial growth factor A (VEGFA) expression in a number of malignancies. This effect of hypoxia and TGF-β1 might be responsible for tumor progression and metastasis of advanced prostate cancer. In the present study, TGF-β1 was shown to induce VEGFA165 secretion from both normal cell lines (HPV7 and RWPE1) and prostate cancer cell lines (DU 145 and PC3). Conversely, hypoxia-stimulated VEGFA165 secretion was observed only in prostate cancer cell lines. Hypoxia induced TGF-β1 expression in PC3 prostate cancer cells, and the TGF-β1 type I receptor (ALK5) kinase inhibitor partially blocked hypoxia-mediated VEGFA16s secretion. This effect of hypoxia provides a novel mechanism to increase VEGFA expression in prostate cancer cells. Although autocrine signaling of VEGFA has been implicated in prostate cancer progression and metastasis, the associated mechanism is poorly characterized. VEGFA activity is mediated via VEGF receptor (VEGFR) 1 (Fit-l) and 2 (FIk-I/KDR). Whereas VEGFR-1 mRNA was detected in normal prostate epithelial cells, VEGFR-2 mRNA and VEGFR protein were expressed only in PC3 cells. VEGFA165 treatment induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERKI/2) in PC3 cells but not in HPV7 cells, suggesting that the autocrine function of VEGFA may be uniquely associated with prostate cancer. Activation of VEGFR-2 by VEGFA165 was shown to enhance migration of PC3 cells. A similar effect was also observed with endogenous VEGFA induced by TGF-β1 and hypoxia. These findings illustrate that an autocrine loop of VEGFA via VEGFR-2 is critical for the tumorigenic effects of TGF-β1 and hypoxia on metastatic prostate cancers.
基金Supported by the Xingtai Key Research and Development Projects (No.2022zz073)the Hebei Key Research and Development Projects (No.23377712D).
文摘AIM:To investigate the effects of fibrillin-1(FBN1)deletion on the integrity of retina-blood barrier function and the apoptosis of vascular endothelial cells under diabetic conditions.METHODS:Streptozotocin(STZ)-induced diabetic mice were used to simulate the diabetic conditions of diabetic retinopathy(DR)patients,and FBN1 expression was detected in retinas from STZ-diabetic mice and controls.In the Gene Expression Omnibus(GEO)database,the GSE60436 dataset was selected to analyze FBN1 expressions in fibrovascular membranes from DR patients.Using lentivirus to knock down FBN1 levels,vascular leakage and endothelial barrier integrity were detected by Evans blue vascular permeability assay,fluorescein fundus angiography(FFA)and immunofluorescence labeled with tight junction marker in vivo.High glucose-induced monkey retinal vascular endothelial cells(RF/6A)were used to investigate effects of FBN1 on the cells in vitro.The vascular endothelial barrier integrity and apoptosis were detected by trans-endothelial electrical resistance(TEER)assay and flow cytometry,respectively.RESULTS:FBN1 mRNA expression was increased in retinas of STZ-induced diabetic mice and fibrovascular membranes of DR patients(GSE60436 datasets)using RNA-seq approach.Besides,knocking down of FBN1 by lentivirus intravitreal injection significantly inhibited the vascular leakage compared to STZ-DR group by Evans blue vascular permeability assay and FFA detection.Expressions of tight junction markers in STZ-DR mouse retinas were lower than those in the control group,and knocking down of FBN1 increased the tight junction levels.In vitro,30 mmol/L glucose could significantly inhibit viability of RF/6A cells,and FBN1 mRNA expression was increased under 30 mmol/L glucose stimulation.Down-regulation of FBN1 reduced high glucose(HG)-stimulated retinal microvascular endothelial cell permeability,increased TEER,and inhibited RF/6A cell apoptosis in vitro.CONCLUSION:The expression level of FBN1 increases in retinas and vascular endothelial cells under diabetic conditions.Down-regulation of FBN1 protects the retina of early diabetic rats from retina-blood barrier damage,reduce vascular leakage,cell apoptosis,and maintain vascular endothelial cell barrier function.
基金supported by the National Natural Science Foundation of China(No.81470418 and No.81770230)。
文摘Morphological and functional abnormalities of vascular endothelial cells(VECs) are risk factors of ischemiareperfusion in skin flaps.Signaling pathway mediated by interleukin-1 receptor(IL-1 R) is essential to hypoxia/reoxygenation(H/R) injury of VECs.While the TIR/BB-loop mimetic(AS-1) disrupts the interaction between IL-1 R and myeloid differentiation primary-response protein 88(MyD88),its role in the VECs dysfunction under H/R is unclear.In this study,we first showed that there was an infiltration of inflammatory cells and the apoptosis of VECs by using a skin flap section from patients who received flap transplantation.We then showed that the H/R treatment induced apoptosis and loss of cell migration of endothelial cell line H926 were attenuated by AS-1.Furthermore,our data suggested that AS-1 inhibits the interaction between IL-1 R and MyD88,and subsequent phosphorylation of IκB and p38 pathway,as well as the nuclear localization of NF-κB subunit p65/p50.Thus,this study indicated that the protective role of AS-1 in H/R induced cellular injury may be due to the AS-1 mediated down-regulation of IL-1 R signaling pathway.
文摘Aim Alpha7 nicotinic acetylcholine receptor (α7nAChR), a subtype of nAChR regulating neurotrans- mission in central nervous system, is an essential regulator of cholinergic antiinflammatory pathway in periphery. The present study was to determine the effects of activation of α7nAChR on oxidant stress-induced injury in endo- thelial cells. Methods Cultured human umbilical vein endothelial cells were treated with H202 (400 μmol · L^-1) or H202plus PNU-282987 ( 10 μmol · L^-1 ). Cell viability and membrane integrity were measured. AnnexinV + PI assay, immunoblotting of bcl-2, bax and cleaved caspase-3, and immunofluorescence of apoptosis inducing factor (AIF) were performed to evaluate apoptosis. Protein expression of vascular peroxidase-1 ( VPO-1 ) and phosphor- JNK were measured by immunoblotting. Results Activation of α7nAChR by a selective agonist PNU-282987 pre-vented H202-indced decrease of cell viability and increase of lactate dehydrogenase release. Activation of α7nAChR markedly reduced cell apoptosis and intracellular oxidative stress level. Moreover, activation of α7nAChR reduced H2 02 -induced VPO-1 protein upregulation and JNK1/2 phosphorylation. The inhibitory effect of α7nAChR activa- tion on VPO-1 was blocked by JNK inhibitor SP600125. In addition, pretreatment of α7nAChR antagonist methyl- lycaconitine blocked the cytoprotective effect of PNU-282987. Conclusion These results provide the first evidence that activation of α7nAChR protects against oxidant stress-induced damage by suppressing VPO-1 in a JNK signa- ling pathway-dependent manner in endothelial cells.
文摘Background and Objective In-stent restenosis(ISR)remains a major limitation of percutaneous coronary intervention despite improvements in stent design and pharmacological agents,whereas the mechanism of ISR has not been fully clarified.In the present study,we sought to investigate the potential association of serum soluble TREM-1(sTREM-1)levels with the incidence of ISR.The role of TREM-1 was evaluated in cultured vascular smooth muscle cells(VSMCs).
文摘Observation of stilbene dropping pill and yiqi drug-containing serum influence mechanism of vascular smooth muscle proliferation, cell cycle and Cyclin D1 and CDK4Choose male SD rats were randomly divided into 2 groups, lavage qishen yiqi pill and the gastric saline group,extract the drug-containing serum and normal serum;To set the two groups of serum respectively different concentrations,concentration in different time by CCK8 detection effects on vascular smooth muscle cell proliferation, select best concentration and action time.Flow cytometry instrument and high-throughput screening detect serum medicated effect on vascular smooth muscle cell cycle;Western blot detect the drug-containing serum of cell cycle protein Cyclin D1 and CDK4 expression.Result is 5%, 10% medicated serum inhibits cell proliferation significantly higher than the normal serum concentrations of same within 24 h, 48 h.G1 phase cells 5% medicated serum group was obviously higher than that of 5% in normal group (P<005), serum and cell proliferation index significantly less than 5% normal serum group (P<005),At the same time, Cyclin D1 and CDK4 expression significantly less than 5% normal serum group (P<005).Conclusion serum of qishen yiqi pill can inhibit vascular smooth muscle cell proliferation, may be through inhibiting cell cycle protein Cyclin D1 and CDK4 expression, block the cell cycle G1 process is closely related to the role.
文摘Objective To investigate the effects of insulin-like growth factor-1 (IGF-1) and oxidized low density lipoprotein (oxLDL) on expression ofphosphatase PHLPP 1 in vascular smooth muscle cells (VSMCs). Methods Rabbit aortic VSMCs were cultured. VSMCs proliferation ability was determined by measuring cell number and mitochondrial dehydrogenase (MD) activity with MTT assay. Western blot was used to detect the protein expression ofphosphatase PHLPP1. Results IGF-1 (100ug/L) increased cell number and MD activity to 3.02 and 3.59 times of that in control group, oxLDL(501xg/ml) elevated the above two parameters to 2.03 and 2.91 times respectively. Western blot showed that IGF-1 and oxLDL inhibited the expression of PHLPPI to 39.27% and 40.26% of the control group (P〈0.01 ). Conclusion IGF- 1 and oxLDL may enhance the proliferation of VSMCs by decreasing the expression ofphosphatase PHLPP 1.
基金supported by a grant from Key Project of Education Commission of Hubei Province(D20202802)Hubei Key Laboratory of Diabetes and Angiopathy Program(2020XZ10)of Hubei University of Science.
文摘Background:Based on previous theoretical studies,JQ-1 as a common inhibitor of bromodomain and extraterminal(BET)proteins was used to treat a variety of diseases.Therefore,we aimed to explore the mechanism of action of JQ-1 on BET proteins based on bioinformatics and build the novel hypothesis of JQ-1 in treating atherosclerosis(AS)caused by proliferation of vascular smooth muscle cells(VSMCs).Methods:We selected the chip GSE138323 which was searched with the key words“Vascular smooth muscle cell proliferation”in Gene Expression Omnibus(GEO)database,and differential gene analysis was performed between the GRO and JQ-1 groups.Then the top twenty significantly up-regulated genes and the top twenty significantly down-regulated genes were selected for Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis.Thirdly,structured the PPI network of forty differential genes,and the core genes were screened by using the MCC algorithm which in“Cytohubba”plugin in the Cytoscapev3.9.1 software.After that,single gene Gene Set Enrichment Analysis(GSEA)enrichment analysis was performed on the selected core genes in R language.Finally molecular docking validation was performed.Results:Five core genes was selected:H3C2,H3C4,H3C7,H3C10 and AREG.The GO enrichment analysis results showed that there were twenty-five entries in biological process,eight entries in cellular components(CC),and twenty-five entries in molecular function.The KEGG enrichment analysis results showed that there were seven pathways,mainly including systemic lupus erythematosus and external neutrophil trap formation.The GSEA results showed that the five genes were mainly through the regulation of cytochrome P450 metabolism,PPAR signaling pathway and other pathways.The molecular docking results showed that JQ-1 had binding activity with these five genes.Conclusions:JQ-1 may regulate the expression of the genes that H3C2,H3C4,H3C7,H3C10 and AREG,to mainly regulate the genes in cytochrome P450 metabolism,PPAR singling pathway and other pathways,to make some influence in the proliferation of VSMCs,and improved atherosclerotic symptoms due to vascular smooth muscle proliferation,thus treating cardiovascular disease.