A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced order extended Kalman filter is proposed. With this method, two rotor flux components are sele...A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced order extended Kalman filter is proposed. With this method, two rotor flux components are selected as the state variables, and the rotor speed as an estimated parameter is regarded as an augmented state variable. The algorithm with reduced order decreases the computational complexity and makes the proposed estimator feasible to be implemented in real time. The simulation results show high accuracy of the estimation algorithm and good performance of speed control, and verify the usefulness of the proposed algorithm.展开更多
The high speed motor is effective to realize downsizing motor in an electric vehicle(EV).Switched Reluctance Motor(SRM)is possible to the high speed drive because the rotor structure has simple and robust.However,the ...The high speed motor is effective to realize downsizing motor in an electric vehicle(EV).Switched Reluctance Motor(SRM)is possible to the high speed drive because the rotor structure has simple and robust.However,the vibration and the acoustic noise are large from the drive principle.Moreover,the conventional complicated current excitation results in the difficulty of the torque controller design.To overcome these problems,the vector control has been proposed for SRM drive.However,the vector control has not been applied to the SRM in the high speed drive.In this paper,the drive conditions such as switching frequency,bus voltage for driving the SRM in the high speed region are clarified.It is shown that the proposed SRM can be driven by the vector control in the high speed region and can realize low vibration.展开更多
The key of speed sensorless vector control system lies in the accurate orientation of magnetic field. In some field-oriented algorithms, the integrator of observers and the dead-time effect bring in system errors duri...The key of speed sensorless vector control system lies in the accurate orientation of magnetic field. In some field-oriented algorithms, the integrator of observers and the dead-time effect bring in system errors during the estimation of field position. In this paper, a saturated feedback integrator is used, and the dead-time effect is compen- sated by current positive feedback. Experiments were carried out on the hardware platform of MCK2407, with chip TMS320LF2407 from TI Company. The results show that the prooosed method is simole and effective, and the accuracy of field position is improved.展开更多
A novel speed sensor-less direct torque control induction motor drive system for the mining locomotive haulage is presented in the paper. Rotor speed identification is based on the model reference adaptive control the...A novel speed sensor-less direct torque control induction motor drive system for the mining locomotive haulage is presented in the paper. Rotor speed identification is based on the model reference adaptive control theory with neural network using back propagation algorithm. The system is implemented using a real-time TMS320F240 digital signal processor. The simulation study and experiment results indicate that the suggested system has good performance.展开更多
A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teachin...A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness.展开更多
Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances. Automatic control is crucial for the efficiency and reliability of wind turb...Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances. Automatic control is crucial for the efficiency and reliability of wind turbines. On the basis of simplified and proper model of variable speed variable pitch wind turbines, the effective wind speed is estimated using extended Kaiman filter. Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other. At below-rated wind speed, the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture. At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power. The simulation shows the effectiveness of the intelligent control.展开更多
Two sets of super-synchronization speed control assemblies for two 80 MVA motor-generator units have been developed successfully in order to satisfy the demand of the toroidal field system in the HL-2A tokamak. Based ...Two sets of super-synchronization speed control assemblies for two 80 MVA motor-generator units have been developed successfully in order to satisfy the demand of the toroidal field system in the HL-2A tokamak. Based on the three-phase logical no-circumfluence a.c./a.c. cycloconverter, the speeds of two 2500 kW double fed drive motors have been regulated by means of the vector control technology. The maximum operating speed of each motor- generator unit has been raised from 1488 rpm (revolutions per minute) to 1650 rpm and the released energy of each unit during a pulsed discharge can reach 500 MJ. As a result, the toroidal field system has the capacity to provide 2.8 tesla (T) in HL-2A experiments.展开更多
A speed-sensorless vector control system for induction machines (IMs)is presented, According to the vector control theory of IMs, the rotor flux is estimated based on a flux observer,and the speed is estimated throu...A speed-sensorless vector control system for induction machines (IMs)is presented, According to the vector control theory of IMs, the rotor flux is estimated based on a flux observer,and the speed is estimated through the method of q-axis rotor flux converging on zero with proportional integral regulator, A 0.75 kW,50 Hz,two-pole induction machine was used in the simulation and experimental verification, The simulation model was constructed in Matlab. A series of tests were performed in the field weakening region, for both no-load and loaded operation. The estimated speed tracks the actual speed well in the based speed region and field weakening region ( 1 per unit value to 4 per unit value). The small estimation error of residual speed is due to the existence of slip.展开更多
A method of improving the stability of multiple-motor drive system fed by a 3-leg single inverter has been devised that employs the averages and differences of estimated parameters for field-oriented control. The para...A method of improving the stability of multiple-motor drive system fed by a 3-leg single inverter has been devised that employs the averages and differences of estimated parameters for field-oriented control. The parameters of each motor (stator current, rotor flux, and speed) are estimated using adaptive rotor flux observers to achieve sensorless control. The validity and effective of the proposed method have been demonstrated through simulations and experiments.展开更多
This paper presents a speed sensorless vector control system for induction machine (IM),which is based on a flux observer. According to vector control theory of IM,the q-axis rotor flux converging on zero is utilized ...This paper presents a speed sensorless vector control system for induction machine (IM),which is based on a flux observer. According to vector control theory of IM,the q-axis rotor flux converging on zero is utilized for speed estimation. Additionally this system solved the online identification of stator resistance by d-axis flux error. The advantages of the proposed system are simplicity and avoidance of the problems caused by only using a voltage model. The effectiveness of the proposed system has been verified by simulation and experimentation.展开更多
文摘A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced order extended Kalman filter is proposed. With this method, two rotor flux components are selected as the state variables, and the rotor speed as an estimated parameter is regarded as an augmented state variable. The algorithm with reduced order decreases the computational complexity and makes the proposed estimator feasible to be implemented in real time. The simulation results show high accuracy of the estimation algorithm and good performance of speed control, and verify the usefulness of the proposed algorithm.
文摘The high speed motor is effective to realize downsizing motor in an electric vehicle(EV).Switched Reluctance Motor(SRM)is possible to the high speed drive because the rotor structure has simple and robust.However,the vibration and the acoustic noise are large from the drive principle.Moreover,the conventional complicated current excitation results in the difficulty of the torque controller design.To overcome these problems,the vector control has been proposed for SRM drive.However,the vector control has not been applied to the SRM in the high speed drive.In this paper,the drive conditions such as switching frequency,bus voltage for driving the SRM in the high speed region are clarified.It is shown that the proposed SRM can be driven by the vector control in the high speed region and can realize low vibration.
文摘The key of speed sensorless vector control system lies in the accurate orientation of magnetic field. In some field-oriented algorithms, the integrator of observers and the dead-time effect bring in system errors during the estimation of field position. In this paper, a saturated feedback integrator is used, and the dead-time effect is compen- sated by current positive feedback. Experiments were carried out on the hardware platform of MCK2407, with chip TMS320LF2407 from TI Company. The results show that the prooosed method is simole and effective, and the accuracy of field position is improved.
文摘A novel speed sensor-less direct torque control induction motor drive system for the mining locomotive haulage is presented in the paper. Rotor speed identification is based on the model reference adaptive control theory with neural network using back propagation algorithm. The system is implemented using a real-time TMS320F240 digital signal processor. The simulation study and experiment results indicate that the suggested system has good performance.
文摘A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness.
文摘Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances. Automatic control is crucial for the efficiency and reliability of wind turbines. On the basis of simplified and proper model of variable speed variable pitch wind turbines, the effective wind speed is estimated using extended Kaiman filter. Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other. At below-rated wind speed, the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture. At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power. The simulation shows the effectiveness of the intelligent control.
基金the Tenth-Five-Year Nuclear Energy Development of the Commission of Science and TechnologyNational Defense Industry of the China National Nuclear Corporation
文摘Two sets of super-synchronization speed control assemblies for two 80 MVA motor-generator units have been developed successfully in order to satisfy the demand of the toroidal field system in the HL-2A tokamak. Based on the three-phase logical no-circumfluence a.c./a.c. cycloconverter, the speeds of two 2500 kW double fed drive motors have been regulated by means of the vector control technology. The maximum operating speed of each motor- generator unit has been raised from 1488 rpm (revolutions per minute) to 1650 rpm and the released energy of each unit during a pulsed discharge can reach 500 MJ. As a result, the toroidal field system has the capacity to provide 2.8 tesla (T) in HL-2A experiments.
文摘A speed-sensorless vector control system for induction machines (IMs)is presented, According to the vector control theory of IMs, the rotor flux is estimated based on a flux observer,and the speed is estimated through the method of q-axis rotor flux converging on zero with proportional integral regulator, A 0.75 kW,50 Hz,two-pole induction machine was used in the simulation and experimental verification, The simulation model was constructed in Matlab. A series of tests were performed in the field weakening region, for both no-load and loaded operation. The estimated speed tracks the actual speed well in the based speed region and field weakening region ( 1 per unit value to 4 per unit value). The small estimation error of residual speed is due to the existence of slip.
文摘A method of improving the stability of multiple-motor drive system fed by a 3-leg single inverter has been devised that employs the averages and differences of estimated parameters for field-oriented control. The parameters of each motor (stator current, rotor flux, and speed) are estimated using adaptive rotor flux observers to achieve sensorless control. The validity and effective of the proposed method have been demonstrated through simulations and experiments.
文摘This paper presents a speed sensorless vector control system for induction machine (IM),which is based on a flux observer. According to vector control theory of IM,the q-axis rotor flux converging on zero is utilized for speed estimation. Additionally this system solved the online identification of stator resistance by d-axis flux error. The advantages of the proposed system are simplicity and avoidance of the problems caused by only using a voltage model. The effectiveness of the proposed system has been verified by simulation and experimentation.