A primary jet vectoring using synthetic jet actuators with different exit configurations was investigated, and the main physical factors influencing jet vectoring were analyzed and summarized. The physical factors of ...A primary jet vectoring using synthetic jet actuators with different exit configurations was investigated, and the main physical factors influencing jet vectoring were analyzed and summarized. The physical factors of the pressure difference, the location and area of the lower pressure region, the component of the synthetic jet momentum and the entrainment ratio of the synthetic jet flow to primary jet flow directly control the vectoring force and the vectoring angle. Three characteristic parameters of the synthetic jet contribute to the pressure difference and the area of the lower pressure region Both the extension step and slope angle of the actuator exit have functions of regulating the location of the lower pressure region, the area of the lower pressure region, and the entrainment ratio of the synthetic jet flow to primary jet flow. The slope angle of the actuator exit has additional functions of regulating the component of the synthetic jet momentum. Based upon analyzing the physical factors of jet vectoring control with synthetic jets, the source variables of the physical factors were established. A preparatory control model of jet vectoring using synthetic jet actuator was presented, and it has the benefit of explaining the efficiency of jet vectoring using synthetic jet actuator with source variables at different values, and it indicates the optimal actuator is taking full advantage of the regulating function.展开更多
选择静止无功补偿器(static var compensator,SVC)或其它类型的并联型无功补偿装置的安装地点对提高电力系统电压稳定性是一个重要而实际的课题。该文提出一种采用向量场正规形理论,以非线性参与因子为依据,确定SVC安装位置的新方法。...选择静止无功补偿器(static var compensator,SVC)或其它类型的并联型无功补偿装置的安装地点对提高电力系统电压稳定性是一个重要而实际的课题。该文提出一种采用向量场正规形理论,以非线性参与因子为依据,确定SVC安装位置的新方法。由于所提出的方法可计及电力系统非线性特性对电压稳定性的影响,因此与线性化分析方法相比,该文提出的方法在系统具有强非线性特性的条件下,仍能准确选择SVC的有效安装地点。为验证所提出方法的有效性,将所提出的方法用于New England39节点系统,确定在系统中使用SVC的最有效位置,通过对几种情况下系统电压稳定性指标的比较,验证所提出方法的有效性。展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.90205016 and 50176055)
文摘A primary jet vectoring using synthetic jet actuators with different exit configurations was investigated, and the main physical factors influencing jet vectoring were analyzed and summarized. The physical factors of the pressure difference, the location and area of the lower pressure region, the component of the synthetic jet momentum and the entrainment ratio of the synthetic jet flow to primary jet flow directly control the vectoring force and the vectoring angle. Three characteristic parameters of the synthetic jet contribute to the pressure difference and the area of the lower pressure region Both the extension step and slope angle of the actuator exit have functions of regulating the location of the lower pressure region, the area of the lower pressure region, and the entrainment ratio of the synthetic jet flow to primary jet flow. The slope angle of the actuator exit has additional functions of regulating the component of the synthetic jet momentum. Based upon analyzing the physical factors of jet vectoring control with synthetic jets, the source variables of the physical factors were established. A preparatory control model of jet vectoring using synthetic jet actuator was presented, and it has the benefit of explaining the efficiency of jet vectoring using synthetic jet actuator with source variables at different values, and it indicates the optimal actuator is taking full advantage of the regulating function.
文摘选择静止无功补偿器(static var compensator,SVC)或其它类型的并联型无功补偿装置的安装地点对提高电力系统电压稳定性是一个重要而实际的课题。该文提出一种采用向量场正规形理论,以非线性参与因子为依据,确定SVC安装位置的新方法。由于所提出的方法可计及电力系统非线性特性对电压稳定性的影响,因此与线性化分析方法相比,该文提出的方法在系统具有强非线性特性的条件下,仍能准确选择SVC的有效安装地点。为验证所提出方法的有效性,将所提出的方法用于New England39节点系统,确定在系统中使用SVC的最有效位置,通过对几种情况下系统电压稳定性指标的比较,验证所提出方法的有效性。