Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant no...Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers.展开更多
Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.T...Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.This research aims to present a novel framework for speed and thrust force control of LIM using space vector pulse width modulation(SVPWM)inverters.The framework under consideration is developed in four stages.To begin,MATLAB Simulink was used to develop a detailed mathematical and electromechanical dynamicmodel.The research presents a modified SVPWM inverter control scheme.By tuning the proportional-integral(PI)controller with a transfer function,optimized values for the PI controller are derived.All the subsystems mentioned above are integrated to create a robust simulation of the LIM’s precise speed and thrust force control scheme.The reference speed values were chosen to evaluate the performance of the respective system,and the developed system’s response was verified using various data sets.For the low-speed range,a reference value of 10m/s is used,while a reference value of 100 m/s is used for the high-speed range.The speed output response indicates that themotor reached reference speed in amatter of seconds,as the delay time is between 8 and 10 s.The maximum amplitude of thrust achieved is less than 400N,demonstrating the controller’s capability to control a high-speed LIM with minimal thrust ripple.Due to the controlled speed range,the developed system is highly recommended for low-speed and high-speed and heavy-duty traction applications.展开更多
Long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) are the main indoor malaria vector tools control tools. The study examined housing characteristics and investigated the relationship bet...Long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) are the main indoor malaria vector tools control tools. The study examined housing characteristics and investigated the relationship between the total volume of household possessions, the volume of the sleeping room, and the hanging of LLINs. A total of 831 bedrooms were randomly selected in Benin in 2015. The findings showed that mud walls were predominant in rural areas (more than 75%), while metal roofs were common (77.3% - 97.9%). Battery-powered lighting was prevalent in rural areas in Northern (97%), while open-flame oil lamps were commonly used in rural areas in Southern (86%). The availability of correct bedding was low, ranging from 1% to 10% in all households. 20% of the bedrooms had at least 50% of their volume occupied by household possessions in urban areas. In rural areas, bedrooms without LLINs had a lower mean rate ratio of the volume occupied by possessions per the total volume of the room compared to bedrooms with at least one LLIN installed (p < 0.0001). The characteristics of human habitats are not favourable to the correct use of vector control intervention indoors. It is therefore important to improve people’s living conditions as the next step for malaria elimination.展开更多
The anarchic urbanization of certain African cities favors the multiplication of the malaria parasite. Thus, the urgent mobilization of African cities is essential to combat this health risk. It is, therefore, with th...The anarchic urbanization of certain African cities favors the multiplication of the malaria parasite. Thus, the urgent mobilization of African cities is essential to combat this health risk. It is, therefore, with the objective of contributing to the investigation of problem areas that the present study evaluates malaria transmission and vector control strategies in the Cotonou V health zone in particular. This is a cross-sectional study taking into account four neighborhoods, including Wologuèdè, Sainte Rita, Gbèdjromèdé and the area around Etoile Rouge. Two nocturnal captures on voluntary humans and the method of spray were carried out in the dry season from December 2021 to February 2022. On the captured Anopheles, the ELISA Circum-Sporozoite Protein test was performed to determine the infectivity and calculate some transmission parameters. Finally, we conducted a survey using the second stage sampling method with one step to ask selected households about their knowledge of vector control methods, their use and the physical integrity of LLINs. We collected 2386 culicidae of which the majority was Culex quinquefasciatus. After the ELISA test, the 29 Anopheles tested, showed no infectivity, i.e. an EIR of 0 pi/h/n. In addition, 99% of the populations in the Cotonou V area use LLINs to protect themselves. However, coils, door and window screens, aerosol sprays, skin and household repellents, and periodic indoor spraying were used. Finally, the majority of nets observed had T1 tears, but there were also T2, T3 and T4 nets (P-value = 0.0). This study confirms that malaria transmission during the dry season in the Cotonou V health zone is almost negligible but not non-existent. Also, populations are exposed to the nuisance of Culex quinquefasciatus mosquitoes continuously throughout the year.展开更多
微处理器芯片的生态建设是高端装备与智能微系统自主、可控的关键,尽管国产数字信号处理(digital signal processing, DSP)器件及其相关开发应用技术近年来得到了一定的发展,但与需求仍存在较大差距。在主动噪声控制领域,前馈型多通道...微处理器芯片的生态建设是高端装备与智能微系统自主、可控的关键,尽管国产数字信号处理(digital signal processing, DSP)器件及其相关开发应用技术近年来得到了一定的发展,但与需求仍存在较大差距。在主动噪声控制领域,前馈型多通道控制方案比单通道有较大的控制范围和较好的性能,但对系统的运算能力有较高的要求。文章以多通道FxLMS算法为基础,对多通道降噪系统的运算量进行了分析,依据国产DSP开发板的电路结构,设计了控制系统方案,并进行了实验研究。实验表明,所设计的噪声控制系统运算效率较ARM作为运算器提高了80%,对100~1 000 Hz内的周期性噪声信号衰减达到15~20 dB,证明了该方案的正确性。展开更多
Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from res...Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from researchers around the world.To control EM waves with an arbitrary polarization state,it is desirable that a complete set of basis states be controlled independently since incident EM waves with an arbitrary polarization state can be decomposed as a linear sum of these basis states.In this work,we present the concept of complete-basis-reprogrammable coding metasurface(CBR-CM)in reflective manners,which can achieve independently dynamic controls over the reflection phases while maintaining the same amplitude for left-handed circularly polarized(LCP)waves and right-handed circularly polarized(RCP)waves.Since LCP and RCP waves together constitute a complete basis set of planar EM waves,dynamicallycontrolled holograms can be generated under arbitrarily polarized wave incidence.The dynamically reconfigurable metaparticle is implemented to demonstrate the CBR-CM’s robust capability of controlling the longitudinal and transverse positions of holograms under LCP and RCP waves independently.It’s expected that the proposed CBR-CM opens up ways of realizing more sophisticated and advanced devices with multiple independent information channels,which may provide technical assistance for digital EM environment reproduction.展开更多
High-vertical-resolution radiosonde wind data are highly valuable for describing the dynamics of the meso-and microscale atmosphere. However, the current algorithm used in China's L-band radar sounding system for ...High-vertical-resolution radiosonde wind data are highly valuable for describing the dynamics of the meso-and microscale atmosphere. However, the current algorithm used in China's L-band radar sounding system for calculating highvertical-resolution wind vectors excessively smooths the data, resulting in significant underestimation of the calculated kinetic energy of gravity waves compared to similar products from other countries, which greatly limits the effective utilization of the data. To address this issue, this study proposes a novel method to calculate high-vertical-resolution wind vectors that utilizes the elevation angle, azimuth angle, and slant range from L-band radar. In order to obtain wind data with a stable quality, a two-step automatic quality control procedure, including the RMSE-F(root-mean-square error F) test and elemental consistency test are first applied to the slant range data, to eliminate continuous erroneous data caused by unstable signals or radar malfunctions. Then, a wind calculation scheme based on a sliding second-order polynomial fitting is utilized to derive the high-vertical-resolution radiosonde wind vectors. The evaluation results demonstrate that the wind data obtained through the proposed method show a high level of consistency with the high-resolution wind data observed using the Vaisala Global Positioning System and the data observed by the new Beidou Navigation Sounding System. The calculation of the kinetic energy of gravity waves in the recalculated wind data also reaches a level comparable to the Vaisala observations.展开更多
The error caused by irreversible demagnetization damages the accurate velocity tracking of an in-wheel motor in a mobile robot.A current feedforward vector control system based on ESO is proposed to compensate it for ...The error caused by irreversible demagnetization damages the accurate velocity tracking of an in-wheel motor in a mobile robot.A current feedforward vector control system based on ESO is proposed to compensate it for the demagnetization motor.A demagnetization mathematical model is established to describe a permanent magnet synchronous motor,which took the change of permanent magnet flux linkage parameters as a factor to count the demagnetization error in velocity tracking.The uncertain disturbance estimation model of the control system is built based on ESO,which eliminates the system error by the feedforward current compensation.It is compared with the vector control method in terms of control accuracy.The simulation results show that the current feedforward vector control method based on ESO reduces the velocity tracking error greatly in conditions of motor demagnetization less than 30%.It is effective to improve the operation accuracy of the mobile robot.展开更多
The automation process is a very important pillar for Industry 4.0.One of the first steps is the control of motors to improve production efficiency and generate energy savings.In mass production industries,techniques ...The automation process is a very important pillar for Industry 4.0.One of the first steps is the control of motors to improve production efficiency and generate energy savings.In mass production industries,techniques such as digital signal processing(DSP)systems are implemented to control motors.These systems are efficient but very expensive for certain applications.From this arises the need for a controller capable of handling AC and DC motors that improves efficiency and maintains low energy consumption.This project presents the design of an adaptive control system for brushless AC induction and DC motors,which is functional to any type of plant in the industry.The design was possible by implementing Matlab software and tools such as digital signal processor(DSP)and Simulink.Through an extensive investigation of the state of the art,three models needed to represent the control system have been specified.The first model for the AC motor,the second for the DC motor and the third for the DSP control;this is done in this way so that the probability of failure is lower.Subsequently,these models have been programmed in Simulink,integrating the three main models into one.In this way,the design of a controller for use in AC induction motors,specifically squirrel cage and brushless DC motors,has been achieved.The final model represents a response time of 0.25 seconds,which is optimal for this type of application,where response times of 2e-3 to 3 seconds are expected.展开更多
In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transfo...In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.展开更多
低密度奇偶校验(Low-Density Parity-Check,LDPC)码是第五代移动通信技术(5th Generation Mobile Communication Technology,5G)系统采用的信道编码技术之一,用于业务信道高速数据传输,具有很强的抗干扰能力和纠错能力。5G-LDPC码编译...低密度奇偶校验(Low-Density Parity-Check,LDPC)码是第五代移动通信技术(5th Generation Mobile Communication Technology,5G)系统采用的信道编码技术之一,用于业务信道高速数据传输,具有很强的抗干扰能力和纠错能力。5G-LDPC码编译码在嵌入式平台的实现是一个值得关注的研究方向。CEVA-XC4500数字信号处理(Digital Signal Processing,DSP)芯片具有极低功耗、高密度计算、集成了超长指令字(Very Long Instruction Word,VLIW)和单指令多数据(Single Instruction Multiple Data,SIMD)矢量功能的特点。针对CEVA-XC4500 DSP矢量汇编指令和内联指令集的特点,提出一系列针对5G-LDPC码编码的代码优化方法,使其满足5G-LDPC码编码工程应用指标要求。仿真结果表明,优化后的5G-LDPC码编码在CEVA-XC4500 DSP内核上表现良好,中长块编码吞吐率超过100 Mb/s、核心矩阵吞吐率超过1 Gb/s,最大吞吐率达到250 Mb/s、最大核心矩阵吞吐率达到1.6 Gb/s。如果CEVA-XC4500 DSP芯片的最大数据位宽将来能进一步增大,吞吐率可以做得更好。该5G-LDPC码编码的代码优化方法为其他信道编码在类似嵌入式平台的实现提供了参考。展开更多
基金Supported by National Natural Science Foundation of China (Grant No.51975294)Fundamental Research Funds for the Central Universities of China (Grant No.30922010706)。
文摘Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(RGP.2/111/43).
文摘Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.This research aims to present a novel framework for speed and thrust force control of LIM using space vector pulse width modulation(SVPWM)inverters.The framework under consideration is developed in four stages.To begin,MATLAB Simulink was used to develop a detailed mathematical and electromechanical dynamicmodel.The research presents a modified SVPWM inverter control scheme.By tuning the proportional-integral(PI)controller with a transfer function,optimized values for the PI controller are derived.All the subsystems mentioned above are integrated to create a robust simulation of the LIM’s precise speed and thrust force control scheme.The reference speed values were chosen to evaluate the performance of the respective system,and the developed system’s response was verified using various data sets.For the low-speed range,a reference value of 10m/s is used,while a reference value of 100 m/s is used for the high-speed range.The speed output response indicates that themotor reached reference speed in amatter of seconds,as the delay time is between 8 and 10 s.The maximum amplitude of thrust achieved is less than 400N,demonstrating the controller’s capability to control a high-speed LIM with minimal thrust ripple.Due to the controlled speed range,the developed system is highly recommended for low-speed and high-speed and heavy-duty traction applications.
文摘Long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) are the main indoor malaria vector tools control tools. The study examined housing characteristics and investigated the relationship between the total volume of household possessions, the volume of the sleeping room, and the hanging of LLINs. A total of 831 bedrooms were randomly selected in Benin in 2015. The findings showed that mud walls were predominant in rural areas (more than 75%), while metal roofs were common (77.3% - 97.9%). Battery-powered lighting was prevalent in rural areas in Northern (97%), while open-flame oil lamps were commonly used in rural areas in Southern (86%). The availability of correct bedding was low, ranging from 1% to 10% in all households. 20% of the bedrooms had at least 50% of their volume occupied by household possessions in urban areas. In rural areas, bedrooms without LLINs had a lower mean rate ratio of the volume occupied by possessions per the total volume of the room compared to bedrooms with at least one LLIN installed (p < 0.0001). The characteristics of human habitats are not favourable to the correct use of vector control intervention indoors. It is therefore important to improve people’s living conditions as the next step for malaria elimination.
文摘The anarchic urbanization of certain African cities favors the multiplication of the malaria parasite. Thus, the urgent mobilization of African cities is essential to combat this health risk. It is, therefore, with the objective of contributing to the investigation of problem areas that the present study evaluates malaria transmission and vector control strategies in the Cotonou V health zone in particular. This is a cross-sectional study taking into account four neighborhoods, including Wologuèdè, Sainte Rita, Gbèdjromèdé and the area around Etoile Rouge. Two nocturnal captures on voluntary humans and the method of spray were carried out in the dry season from December 2021 to February 2022. On the captured Anopheles, the ELISA Circum-Sporozoite Protein test was performed to determine the infectivity and calculate some transmission parameters. Finally, we conducted a survey using the second stage sampling method with one step to ask selected households about their knowledge of vector control methods, their use and the physical integrity of LLINs. We collected 2386 culicidae of which the majority was Culex quinquefasciatus. After the ELISA test, the 29 Anopheles tested, showed no infectivity, i.e. an EIR of 0 pi/h/n. In addition, 99% of the populations in the Cotonou V area use LLINs to protect themselves. However, coils, door and window screens, aerosol sprays, skin and household repellents, and periodic indoor spraying were used. Finally, the majority of nets observed had T1 tears, but there were also T2, T3 and T4 nets (P-value = 0.0). This study confirms that malaria transmission during the dry season in the Cotonou V health zone is almost negligible but not non-existent. Also, populations are exposed to the nuisance of Culex quinquefasciatus mosquitoes continuously throughout the year.
基金supported by the National Natural Science Foundation of China (62101588)the National Key Research and Development Program of China (SQ2022YFB3806200)+1 种基金the Young Talent Fund of Association for Science and Technology in Shaanxi (20240129)the Postdoctoral Fellowship Program of CPSF (GZC20242285)
文摘Reprogrammable metasurfaces,which establish a fascinating bridge between physical and information domains,can dynamically control electromagnetic(EM)waves in real time and thus have attracted great attentions from researchers around the world.To control EM waves with an arbitrary polarization state,it is desirable that a complete set of basis states be controlled independently since incident EM waves with an arbitrary polarization state can be decomposed as a linear sum of these basis states.In this work,we present the concept of complete-basis-reprogrammable coding metasurface(CBR-CM)in reflective manners,which can achieve independently dynamic controls over the reflection phases while maintaining the same amplitude for left-handed circularly polarized(LCP)waves and right-handed circularly polarized(RCP)waves.Since LCP and RCP waves together constitute a complete basis set of planar EM waves,dynamicallycontrolled holograms can be generated under arbitrarily polarized wave incidence.The dynamically reconfigurable metaparticle is implemented to demonstrate the CBR-CM’s robust capability of controlling the longitudinal and transverse positions of holograms under LCP and RCP waves independently.It’s expected that the proposed CBR-CM opens up ways of realizing more sophisticated and advanced devices with multiple independent information channels,which may provide technical assistance for digital EM environment reproduction.
基金funded by an NSFC Major Project (Grant No. 42090033)the China Meteorological Administration Youth Innovation Team “High-Value Climate Change Data Product Development and Application Services”(Grant No. CMA2023QN08)the National Meteorological Information Centre Surplus Funds Program (Grant NMICJY202310)。
文摘High-vertical-resolution radiosonde wind data are highly valuable for describing the dynamics of the meso-and microscale atmosphere. However, the current algorithm used in China's L-band radar sounding system for calculating highvertical-resolution wind vectors excessively smooths the data, resulting in significant underestimation of the calculated kinetic energy of gravity waves compared to similar products from other countries, which greatly limits the effective utilization of the data. To address this issue, this study proposes a novel method to calculate high-vertical-resolution wind vectors that utilizes the elevation angle, azimuth angle, and slant range from L-band radar. In order to obtain wind data with a stable quality, a two-step automatic quality control procedure, including the RMSE-F(root-mean-square error F) test and elemental consistency test are first applied to the slant range data, to eliminate continuous erroneous data caused by unstable signals or radar malfunctions. Then, a wind calculation scheme based on a sliding second-order polynomial fitting is utilized to derive the high-vertical-resolution radiosonde wind vectors. The evaluation results demonstrate that the wind data obtained through the proposed method show a high level of consistency with the high-resolution wind data observed using the Vaisala Global Positioning System and the data observed by the new Beidou Navigation Sounding System. The calculation of the kinetic energy of gravity waves in the recalculated wind data also reaches a level comparable to the Vaisala observations.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51975396)the Natural Science Foundation of Shanxi Province(Grant No.202103021224264).
文摘The error caused by irreversible demagnetization damages the accurate velocity tracking of an in-wheel motor in a mobile robot.A current feedforward vector control system based on ESO is proposed to compensate it for the demagnetization motor.A demagnetization mathematical model is established to describe a permanent magnet synchronous motor,which took the change of permanent magnet flux linkage parameters as a factor to count the demagnetization error in velocity tracking.The uncertain disturbance estimation model of the control system is built based on ESO,which eliminates the system error by the feedforward current compensation.It is compared with the vector control method in terms of control accuracy.The simulation results show that the current feedforward vector control method based on ESO reduces the velocity tracking error greatly in conditions of motor demagnetization less than 30%.It is effective to improve the operation accuracy of the mobile robot.
文摘The automation process is a very important pillar for Industry 4.0.One of the first steps is the control of motors to improve production efficiency and generate energy savings.In mass production industries,techniques such as digital signal processing(DSP)systems are implemented to control motors.These systems are efficient but very expensive for certain applications.From this arises the need for a controller capable of handling AC and DC motors that improves efficiency and maintains low energy consumption.This project presents the design of an adaptive control system for brushless AC induction and DC motors,which is functional to any type of plant in the industry.The design was possible by implementing Matlab software and tools such as digital signal processor(DSP)and Simulink.Through an extensive investigation of the state of the art,three models needed to represent the control system have been specified.The first model for the AC motor,the second for the DC motor and the third for the DSP control;this is done in this way so that the probability of failure is lower.Subsequently,these models have been programmed in Simulink,integrating the three main models into one.In this way,the design of a controller for use in AC induction motors,specifically squirrel cage and brushless DC motors,has been achieved.The final model represents a response time of 0.25 seconds,which is optimal for this type of application,where response times of 2e-3 to 3 seconds are expected.
文摘In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.