In this paper, a classification method based on Support Vector Machine (SVM) is given in the digital modulation signal classification. The second, fourth and sixth order cumulants of the received signals are used as c...In this paper, a classification method based on Support Vector Machine (SVM) is given in the digital modulation signal classification. The second, fourth and sixth order cumulants of the received signals are used as classification vectors firstly, then the kernel thought is used to map the feature vector to the high dimensional feature space and the optimum separating hyperplane is constructed in space to realize signal recognition. In order to build an effective and robust SVM classifier, the radial basis kernel function is selected, one against one or one against rest of multi-class classifier is designed, and method of parameter selection using cross- validation grid is adopted. Through the experiments it can be concluded that the classifier based on SVM has high performance and is more robust.展开更多
A great number of semi-analytical models, notably the representation of electromagnetic fields by integral equations are based on the second order vector potential (SOVP) formalism which introduces two scalar potentia...A great number of semi-analytical models, notably the representation of electromagnetic fields by integral equations are based on the second order vector potential (SOVP) formalism which introduces two scalar potentials in order to obtain analytical expressions of the electromagnetic fields from the two potentials. However, the scalar decomposition is often known for canonical coordinate systems. This paper aims in introducing a specific SOVP formulation dedicated to arbitrary non-orthogonal curvilinear coordinates systems. The electromagnetic field representation which is derived in this paper constitutes the key stone for the development of semi-analytical models for solving some eddy currents moelling problems and electromagnetic radiation problems considering at least two homogeneous media separated by a rough interface. This SOVP formulation is derived from the tensor formalism and Maxwell’s equations written in a non-orthogonal coordinates system adapted to a surface characterized by a 2D arbitrary aperiodic profile.展开更多
The stationary probability vectors of a second order Markov chain on the(n-1)-dimensional standard simplex are considered.In 2015,Li and Zhang gave a characterization of the second order Markov chain such that every v...The stationary probability vectors of a second order Markov chain on the(n-1)-dimensional standard simplex are considered.In 2015,Li and Zhang gave a characterization of the second order Markov chain such that every vector in the simplex is a stationary vector.A modification of the characterization is presented in the paper.Some sufficient conditions are derived for any facet of the simplex such that every vector of the facet is a stationary vector.展开更多
In this paper, we introduce the concept of a (weak) minimizer of order k for a nonsmooth vector optimization problem over cones. Generalized classes of higher-order cone-nonsmooth (F, ρ)-convex functions are introduc...In this paper, we introduce the concept of a (weak) minimizer of order k for a nonsmooth vector optimization problem over cones. Generalized classes of higher-order cone-nonsmooth (F, ρ)-convex functions are introduced and sufficient optimality results are proved involving these classes. Also, a unified dual is associated with the considered primal problem, and weak and strong duality results are established.展开更多
Mathematical morphology can process the binary and grayscale image successfully. This theory cannot be extended to the color image directly. In color space, a vector represents a pixel, so in order to compare vectors,...Mathematical morphology can process the binary and grayscale image successfully. This theory cannot be extended to the color image directly. In color space, a vector represents a pixel, so in order to compare vectors, vectoriel orderings must be defined first. This paper addresses the question of the extension of morphological operator to the case of color images. The proposed method used the order by bit mixing to replace the conditional order. Our order is based on a combination of reduced and bit mixing ordering of the underlying data. Additionally it is a total ordering. Since it not only solves the problems of false color generated by the marginal order but also those of multiple extrema generated by reduced order. The performance of the introduced operators is illustrated by means of different applications: color gradients for segmenting, image smoothing (noise suppression) by median filter operator and Laplacian operators. Examples of natural color images and synthetic color images are given. Experimental results show the improvement brought by this new method.展开更多
针对旋转矢量(rotary vector, RV)减速器多源耦合严重,行星齿轮局部故障所引起的冲击易被其他干扰分量所淹没,故障特征提取困难的问题,结合编码器信号的优势提出了一种基于自适应最大二阶循环平稳盲解卷积(adaptive maximum second orde...针对旋转矢量(rotary vector, RV)减速器多源耦合严重,行星齿轮局部故障所引起的冲击易被其他干扰分量所淹没,故障特征提取困难的问题,结合编码器信号的优势提出了一种基于自适应最大二阶循环平稳盲解卷积(adaptive maximum second order cyclostationarity blind deconvolution, ACYCBD)的RV减速器行星齿轮局部故障检测方法。首先,拾取伺服电机内置光编码器信号,并利用向前差分计算获得瞬时角速度(instantaneous angular speed, IAS)信号;然后,依据特征评价指标(characteristic evaluation indicator, CEI)最大化原则自适应确定ACYCBD优化滤波器长度,并对IAS信号进行增强;最后,通过识别时域中与故障冲击周期相匹配的理论齿数实现RV减速器故障检测。通过试验数据分析,并将所提方法与现有的稀疏低秩分解算法和增强CYCBD算法对比,验证了所提方法的有效性。展开更多
The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in...The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in pipelines. Presently, the method of characteristics is widely used to solve classical hydraulic transient problems. However, when it is used to solve coupling hydraulic transient problems, excessive interpolation errors may be introduced into the results due to unavoidable multiwave interpolated calculations. To deal with the problem, a finite difference scheme based on the Steger- Warming flux vector splitting is proposed. A flux vector splitting scheme is established for the coupling hydraulic transient model of gas-liquid-solid three-phase mixed flow in the pipelines. The flux subvectors are then discretized by the Lax-Wendroff central difference scheme and the Warming-Beam upwind difference scheme with second-order precision in both time and space. Under the Rankine-Hugoniot conditions and the corresponding boundary conditions, an effective solution to those points located at the boundaries is developed, which can avoid the problem beyond the calculation region directly induced by the second-order discrete technique. Numerical and experimental verifications indicate that the proposed scheme has several desirable advantages including high calculation precision, excellent shock wave capture capability without false numerical oscillation, low sensitivity to the Courant number, and good stability.展开更多
文摘In this paper, a classification method based on Support Vector Machine (SVM) is given in the digital modulation signal classification. The second, fourth and sixth order cumulants of the received signals are used as classification vectors firstly, then the kernel thought is used to map the feature vector to the high dimensional feature space and the optimum separating hyperplane is constructed in space to realize signal recognition. In order to build an effective and robust SVM classifier, the radial basis kernel function is selected, one against one or one against rest of multi-class classifier is designed, and method of parameter selection using cross- validation grid is adopted. Through the experiments it can be concluded that the classifier based on SVM has high performance and is more robust.
文摘A great number of semi-analytical models, notably the representation of electromagnetic fields by integral equations are based on the second order vector potential (SOVP) formalism which introduces two scalar potentials in order to obtain analytical expressions of the electromagnetic fields from the two potentials. However, the scalar decomposition is often known for canonical coordinate systems. This paper aims in introducing a specific SOVP formulation dedicated to arbitrary non-orthogonal curvilinear coordinates systems. The electromagnetic field representation which is derived in this paper constitutes the key stone for the development of semi-analytical models for solving some eddy currents moelling problems and electromagnetic radiation problems considering at least two homogeneous media separated by a rough interface. This SOVP formulation is derived from the tensor formalism and Maxwell’s equations written in a non-orthogonal coordinates system adapted to a surface characterized by a 2D arbitrary aperiodic profile.
基金National Natural Science Foundation of China(Nos.1167125811371086)
文摘The stationary probability vectors of a second order Markov chain on the(n-1)-dimensional standard simplex are considered.In 2015,Li and Zhang gave a characterization of the second order Markov chain such that every vector in the simplex is a stationary vector.A modification of the characterization is presented in the paper.Some sufficient conditions are derived for any facet of the simplex such that every vector of the facet is a stationary vector.
文摘In this paper, we introduce the concept of a (weak) minimizer of order k for a nonsmooth vector optimization problem over cones. Generalized classes of higher-order cone-nonsmooth (F, ρ)-convex functions are introduced and sufficient optimality results are proved involving these classes. Also, a unified dual is associated with the considered primal problem, and weak and strong duality results are established.
文摘Mathematical morphology can process the binary and grayscale image successfully. This theory cannot be extended to the color image directly. In color space, a vector represents a pixel, so in order to compare vectors, vectoriel orderings must be defined first. This paper addresses the question of the extension of morphological operator to the case of color images. The proposed method used the order by bit mixing to replace the conditional order. Our order is based on a combination of reduced and bit mixing ordering of the underlying data. Additionally it is a total ordering. Since it not only solves the problems of false color generated by the marginal order but also those of multiple extrema generated by reduced order. The performance of the introduced operators is illustrated by means of different applications: color gradients for segmenting, image smoothing (noise suppression) by median filter operator and Laplacian operators. Examples of natural color images and synthetic color images are given. Experimental results show the improvement brought by this new method.
基金supported by the Natural Science Foundation Project of CQ CSTC (No. 2010BB7421)
文摘The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in pipelines. Presently, the method of characteristics is widely used to solve classical hydraulic transient problems. However, when it is used to solve coupling hydraulic transient problems, excessive interpolation errors may be introduced into the results due to unavoidable multiwave interpolated calculations. To deal with the problem, a finite difference scheme based on the Steger- Warming flux vector splitting is proposed. A flux vector splitting scheme is established for the coupling hydraulic transient model of gas-liquid-solid three-phase mixed flow in the pipelines. The flux subvectors are then discretized by the Lax-Wendroff central difference scheme and the Warming-Beam upwind difference scheme with second-order precision in both time and space. Under the Rankine-Hugoniot conditions and the corresponding boundary conditions, an effective solution to those points located at the boundaries is developed, which can avoid the problem beyond the calculation region directly induced by the second-order discrete technique. Numerical and experimental verifications indicate that the proposed scheme has several desirable advantages including high calculation precision, excellent shock wave capture capability without false numerical oscillation, low sensitivity to the Courant number, and good stability.