期刊文献+
共找到3,605篇文章
< 1 2 181 >
每页显示 20 50 100
Self-Attention Spatio-Temporal Deep Collaborative Network for Robust FDIA Detection in Smart Grids
1
作者 Tong Zu Fengyong Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1395-1417,共23页
False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work u... False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal selfattention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness. 展开更多
关键词 False data injection attacks smart grid deep learning self-attention mechanism spatio-temporal fusion
下载PDF
“stppSim”: A Novel Analytical Tool for Creating Synthetic Spatio-Temporal Point Data
2
作者 Monsuru Adepeju 《Open Journal of Modelling and Simulation》 2023年第4期99-116,共18页
In crime science, understanding the dynamics and interactions between crime events is crucial for comprehending the underlying factors that drive their occurrences. Nonetheless, gaining access to detailed spatiotempor... In crime science, understanding the dynamics and interactions between crime events is crucial for comprehending the underlying factors that drive their occurrences. Nonetheless, gaining access to detailed spatiotemporal crime records from law enforcement faces significant challenges due to confidentiality concerns. In response to these challenges, this paper introduces an innovative analytical tool named “stppSim,” designed to synthesize fine-grained spatiotemporal point records while safeguarding the privacy of individual locations. By utilizing the open-source R platform, this tool ensures easy accessibility for researchers, facilitating download, re-use, and potential advancements in various research domains beyond crime science. 展开更多
关键词 OPEN-SOURCE Synthetic data CRIME spatio-temporal Patterns data Privacy
下载PDF
Spatio-temporal changes of underground coal fires during 2008-2016 in Khanh Hoa coal field(North-east of Viet Nam) using Landsat time-series data 被引量:3
3
作者 Tuyen Danh VU Thanh Tien NGUYEN 《Journal of Mountain Science》 SCIE CSCD 2018年第12期2703-2720,共18页
Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing th... Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field. 展开更多
关键词 UNDERGROUND COAL fires spatio-temporal CHANGES Khanh Hoa COAL field (Viet Nam) LANDSAT time-series data
下载PDF
Constructing a raster-based spatio-temporal hierarchical data model for marine fisheries application 被引量:2
4
作者 SU Fenzhen ZHOU Chenhu ZHANG Tianyu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2006年第1期57-63,共7页
Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently... Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently, greater emphasis has been placed on GIS (geographical information system)to deal with the marine information. The GIS has shown great success for terrestrial applications in the last decades, but its use in marine fields has been far more restricted. One of the main reasons is that most of the GIS systems or their data models are designed for land applications. They cannot do well with the nature of the marine environment and for the marine information. And this becomes a fundamental challenge to the traditional GIS and its data structure. This work designed a data model, the raster-based spatio-temporal hierarchical data model (RSHDM), for the marine information system, or for the knowledge discovery fi'om spatio-temporal data, which bases itself on the nature of the marine data and overcomes the shortages of the current spatio-temporal models when they are used in the field. As an experiment, the marine fishery data warehouse (FDW) for marine fishery management was set up, which was based on the RSHDM. The experiment proved that the RSHDM can do well with the data and can extract easily the aggregations that the management needs at different levels. 展开更多
关键词 marine geographical information system spatio-temporal data model knowledge discovery fishery management data warehouse
下载PDF
DNA Computing with Water Strider Based Vector Quantization for Data Storage Systems
5
作者 A.Arokiaraj Jovith S.Rama Sree +4 位作者 Gudikandhula Narasimha Rao K.Vijaya Kumar Woong Cho Gyanendra Prasad Joshi Sung Won Kim 《Computers, Materials & Continua》 SCIE EI 2023年第3期6429-6444,共16页
The exponential growth of data necessitates an effective data storage scheme,which helps to effectively manage the large quantity of data.To accomplish this,Deoxyribonucleic Acid(DNA)digital data storage process can b... The exponential growth of data necessitates an effective data storage scheme,which helps to effectively manage the large quantity of data.To accomplish this,Deoxyribonucleic Acid(DNA)digital data storage process can be employed,which encodes and decodes binary data to and from synthesized strands of DNA.Vector quantization(VQ)is a commonly employed scheme for image compression and the optimal codebook generation is an effective process to reach maximum compression efficiency.This article introduces a newDNAComputingwithWater StriderAlgorithm based Vector Quantization(DNAC-WSAVQ)technique for Data Storage Systems.The proposed DNAC-WSAVQ technique enables encoding data using DNA computing and then compresses it for effective data storage.Besides,the DNAC-WSAVQ model initially performsDNA encoding on the input images to generate a binary encoded form.In addition,aWater Strider algorithm with Linde-Buzo-Gray(WSA-LBG)model is applied for the compression process and thereby storage area can be considerably minimized.In order to generate optimal codebook for LBG,the WSA is applied to it.The performance validation of the DNAC-WSAVQ model is carried out and the results are inspected under several measures.The comparative study highlighted the improved outcomes of the DNAC-WSAVQ model over the existing methods. 展开更多
关键词 DNA computing data storage image compression vector quantization ws algorithm space saving
下载PDF
MANAGEMENT OF SPATIO-TEMPORAL DATA OF CADASTRAL INFORMATION SYSTEM IN CHINA 被引量:1
6
作者 Gao Wenxiu Zhuang Yan Liu Lang 《Geo-Spatial Information Science》 1999年第1期90-95,共6页
Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most cruci... Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most crucial one is the temporal problem in cadastral management. That is, CIS must consider both spatial data and temporal data. This paper reviews the situation of the current CIS and provides a method to manage the spatiotemporal data of CIS, and takes the CIS for Guangdong Province as an example to explain how to realize it in practice. 展开更多
关键词 CIS SPATIAL data non-spatial data TEMPORAL INFORMATION spatio-temporal data
下载PDF
Fusing multi-source data to map spatio-temporal dynamics of winter rape on the Jianghan Plain and Dongting Lake Plain, China 被引量:1
7
作者 TAO Jian-bin LIU Wen-bin +2 位作者 TAN Wen-xia KONG Xiang-bing XU Meng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第10期2393-2407,共15页
Mapping crop distribution with remote sensing data is of great importance for agricultural production, food security and agricultural sustainability. Winter rape is an important oil crop, which plays an important role... Mapping crop distribution with remote sensing data is of great importance for agricultural production, food security and agricultural sustainability. Winter rape is an important oil crop, which plays an important role in the cooking oil market of China. The Jianghan Plain and Dongting Lake Plain (JPDLP) are major agricultural production areas in China. Essential changes in winter rape distribution have taken place in this area during the 21st century. However, the pattern of these changes remains unknown. In this study, the spatial and temporal dynamics of winter rape from 2000 to 2017 on the JPDLP were analyzed. An artificial neural network (ANN)-based classification method was proposed to map fractional winter rape distribution by fusing moderate resolution imaging spectrometer (MODIS) data and high-resolution imagery. The results are as follows:(1) The total winter rape acreages on the JPDLP dropped significantly, especially on the Jianghan Plain with a decline of about 45% during 2000 and 2017.(2) The winter rape abundance keeps changing with about 20–30% croplands changing their abundance drastically in every two consecutive observation years.(3) The winter rape has obvious regional differentiation for the trend of its change at the county level, and the decreasing trend was observed more strongly in the traditionally dominant agricultural counties. 展开更多
关键词 WINTER rape spatio-temporal dynamics time-series MODIS data artificial NEURAL network
下载PDF
A Spatio-temporal Data Model for Road Network in Data Center Based on Incremental Updating in Vehicle Navigation System 被引量:1
8
作者 WU Huisheng LIU Zhaoli +1 位作者 ZHANG Shuwen ZUO Xiuling 《Chinese Geographical Science》 SCIE CSCD 2011年第3期346-353,共8页
The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation sy... The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network. 展开更多
关键词 spatio-temporal data model reverse map with overlay model road network incremental updating vehicle navigation system data center vehicle terminal
下载PDF
Differentially Private Support Vector Machines with Knowledge Aggregation
9
作者 Teng Wang Yao Zhang +2 位作者 Jiangguo Liang Shuai Wang Shuanggen Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3891-3907,共17页
With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most... With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most elementary learning models of machine learning.Privacy issues surrounding SVM classifier training have attracted increasing attention.In this paper,we investigate Differential Privacy-compliant Federated Machine Learning with Dimensionality Reduction,called FedDPDR-DPML,which greatly improves data utility while providing strong privacy guarantees.Considering in distributed learning scenarios,multiple participants usually hold unbalanced or small amounts of data.Therefore,FedDPDR-DPML enables multiple participants to collaboratively learn a global model based on weighted model averaging and knowledge aggregation and then the server distributes the global model to each participant to improve local data utility.Aiming at high-dimensional data,we adopt differential privacy in both the principal component analysis(PCA)-based dimensionality reduction phase and SVM classifiers training phase,which improves model accuracy while achieving strict differential privacy protection.Besides,we train Differential privacy(DP)-compliant SVM classifiers by adding noise to the objective function itself,thus leading to better data utility.Extensive experiments on three high-dimensional datasets demonstrate that FedDPDR-DPML can achieve high accuracy while ensuring strong privacy protection. 展开更多
关键词 Differential privacy support vector machine knowledge aggregation data utility
下载PDF
Learning Vector Quantization-Based Fuzzy Rules Oversampling Method
10
作者 Jiqiang Chen Ranran Han +1 位作者 Dongqing Zhang Litao Ma 《Computers, Materials & Continua》 SCIE EI 2024年第6期5067-5082,共16页
Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship ... Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes.However,the creation of fuzzy rules typically depends on expert knowledge,which may not fully leverage the label information in training data and may be subjective.To address this issue,a novel fuzzy rule oversampling approach is developed based on the learning vector quantization(LVQ)algorithm.In this method,the label information of the training data is utilized to determine the antecedent part of If-Then fuzzy rules by dynamically dividing attribute intervals using LVQ.Subsequently,fuzzy rules are generated and adjusted to calculate rule weights.The number of new samples to be synthesized for each rule is then computed,and samples from the minority class are synthesized based on the newly generated fuzzy rules.This results in the establishment of a fuzzy rule oversampling method based on LVQ.To evaluate the effectiveness of this method,comparative experiments are conducted on 12 publicly available imbalance datasets with five other sampling techniques in combination with the support function machine.The experimental results demonstrate that the proposed method can significantly enhance the classification algorithm across seven performance indicators,including a boost of 2.15%to 12.34%in Accuracy,6.11%to 27.06%in G-mean,and 4.69%to 18.78%in AUC.These show that the proposed method is capable of more efficiently improving the classification performance of imbalanced data. 展开更多
关键词 OVERSAMPLING fuzzy rules learning vector quantization imbalanced data support function machine
下载PDF
Spatio-Temporal Prediction of Root Zone Soil Moisture Using Multivariate Relevance Vector Machines
11
作者 Bushra Zaman Mac McKee 《Open Journal of Modern Hydrology》 2014年第3期80-90,共11页
Root zone soil moisture at one and two meter depths are forecasted four days into the future. In this article, we propose a new multivariate output prediction approach to root zone soil moisture assessment using learn... Root zone soil moisture at one and two meter depths are forecasted four days into the future. In this article, we propose a new multivariate output prediction approach to root zone soil moisture assessment using learning machine models. These models are known for their robustness, efficiency, and sparseness;they provide a statistically sound approach to solving the inverse problem and thus to building statistical models. The multivariate relevance vector machine (MVRVM) is used to build a model that forecasts soil moisture states based upon current soil moisture and soil temperature conditions. The methodology combines the data at different depths from 5 cm to 50 cm, the largest of which corresponds to the depth at which the soil moisture sensors are generally operational, to produce soil moisture predictions at larger depths. The MVRVM test results for soil moisture predictions at 1 m and 2 m depth on the 4th day are excellent with RMSE = 0.0131 m3/m3 for 1 m;and RMSE = 0.0015 m3/m3 for 2 m forecasted values. The statistics of predictions for 4th day (CoE = 0.87 for 1 m and CoE = 0.96 for 2 m) indicate good model generalization capability and computations show good agreement with actual measurements with R2 = 0.88 and R2 = 0.97 for 1 m and 2 m depths, respectively. The MVRVM produces good results for all four days. Bootstrapping is used to check over/under-fitting and uncertainty in model estimates. 展开更多
关键词 RELEVANCE vector Machines Statistics Predictions SOILS Soil MOISTURE data Management
下载PDF
Wi-Fi Positioning Dataset with Multiusers and Multidevices Considering Spatio-Temporal Variations
12
作者 Imran Ashraf Sadia Din +1 位作者 Soojung Hur Yongwan Park 《Computers, Materials & Continua》 SCIE EI 2022年第3期5213-5232,共20页
Precise information on indoor positioning provides a foundation for position-related customer services.Despite the emergence of several indoor positioning technologies such as ultrawideband,infrared,radio frequency id... Precise information on indoor positioning provides a foundation for position-related customer services.Despite the emergence of several indoor positioning technologies such as ultrawideband,infrared,radio frequency identification,Bluetooth beacons,pedestrian dead reckoning,and magnetic field,Wi-Fi is one of the most widely used technologies.Predominantly,Wi-Fi fingerprinting is the most popular method and has been researched over the past two decades.Wi-Fi positioning faces three core problems:device heterogeneity,robustness to signal changes caused by human mobility,and device attitude,i.e.,varying orientations.The existing methods do not cover these aspects owing to the unavailability of publicly available datasets.This study introduces a dataset that includes the Wi-Fi received signal strength(RSS)gathered using four different devices,namely Samsung Galaxy S8,S9,A8,LG G6,and LG G7,operated by three surveyors,including a female and two males.In addition,three orientations of the smartphones are used for the data collection and include multiple buildings with a multifloor environment.Various levels of human mobility have been considered in dynamic environments.To analyze the time-related impact on Wi-Fi RSS,data over 3 years have been considered. 展开更多
关键词 Wi-fi positioning dataset smartphone sensors benchmark analysis indoor positioning and localization spatio-temporal data
下载PDF
Hotshots of Spatio-temporal Behavior of Chinese Residents in the Context of Big Data:Visual Analysis Based on CiteSpace
13
作者 LIU Tianlong WANG Fengyu JI Xiang 《Journal of Landscape Research》 2022年第5期47-51,共5页
By using CiteSpace software to create a knowledge map of authors,institutions and keywords,the literature on the spatio-temporal behavior of Chinese residents based on big data in the architectural planning discipline... By using CiteSpace software to create a knowledge map of authors,institutions and keywords,the literature on the spatio-temporal behavior of Chinese residents based on big data in the architectural planning discipline published in the China Academic Network Publishing Database(CNKI)was analyzed and discussed.It is found that there was a lack of communication and cooperation among research institutions and scholars;the research hotspots involved four main areas,including“application in tourism research”,“application in traffic travel research”,“application in work-housing relationship research”,and“application in personal family life research”. 展开更多
关键词 Big data spatio-temporal behavior Visual analysis Hot topics TRENDS
下载PDF
基于Vector 3D Tiles格式的三维矢量数据可视化研究
14
作者 熊英 周志远 邬俊 《城市勘测》 2024年第5期73-77,共5页
为了探究Vector 3D Tiles格式在三维矢量地物表达方面的效果和性能,研究了一套Vector 3D Tiles格式生产和表达工具,用于在Cesium平台上对矢量数据进行可视化展示。主要工作包括两部分:一是将数据从传统的矢量格式转换为Vector 3D Tiles... 为了探究Vector 3D Tiles格式在三维矢量地物表达方面的效果和性能,研究了一套Vector 3D Tiles格式生产和表达工具,用于在Cesium平台上对矢量数据进行可视化展示。主要工作包括两部分:一是将数据从传统的矢量格式转换为Vector 3D Tiles格式,二是在Cesium平台上展示转换后的Vector 3D Tiles数据。为了验证方法可行性,采用广州市地下管线数据开展了实验,对Shapefile、GeoJSON二维矢量格式进行处理,生成Vector 3D Tiles格式后,在Cesium平台上进行三维可视化展示。通过不同格式数据的加载效率和呈现效果比较,证明了矢量切片数据比原始矢量格式加载更快、渲染更平滑。在此基础上,对矢量切片数据基于自定义三维样式的渲染能力进行了验证。 展开更多
关键词 矢量切片 3D-GIS CESIUM 3D Tiles 地下管线可视化 矢量数据可视化
下载PDF
Multi-mode process monitoring based on a novel weighted local standardization strategy and support vector data description 被引量:7
15
作者 赵付洲 宋冰 侍洪波 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2896-2905,共10页
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the... There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring. 展开更多
关键词 multiple operating modes weighted local standardization support vector data description multi-mode monitoring
下载PDF
Optimization of support vector machine power load forecasting model based on data mining and Lyapunov exponents 被引量:7
16
作者 牛东晓 王永利 马小勇 《Journal of Central South University》 SCIE EI CAS 2010年第2期406-412,共7页
According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are comput... According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are computed to determine the time delay and the embedding dimension.Due to different features of the data,data mining algorithm is conducted to classify the data into different groups.Redundant information is eliminated by the advantage of data mining technology,and the historical loads that have highly similar features with the forecasting day are searched by the system.As a result,the training data can be decreased and the computing speed can also be improved when constructing support vector machine(SVM) model.Then,SVM algorithm is used to predict power load with parameters that get in pretreatment.In order to prove the effectiveness of the new model,the calculation with data mining SVM algorithm is compared with that of single SVM and back propagation network.It can be seen that the new DSVM algorithm effectively improves the forecast accuracy by 0.75%,1.10% and 1.73% compared with SVM for two random dimensions of 11-dimension,14-dimension and BP network,respectively.This indicates that the DSVM gains perfect improvement effect in the short-term power load forecasting. 展开更多
关键词 power load forecasting support vector machine (SVM) Lyapunov exponent data mining embedding dimension feature classification
下载PDF
Characteristics of Fengyun-4A Satellite Atmospheric Motion Vectors and Their Impacts on Data Assimilation 被引量:3
17
作者 Yaodeng CHEN Jie SHEN +2 位作者 Shuiyong FAN Deming MENG Cheng WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第11期1222-1238,共17页
The high observation efficiency,scanning speed and observation frequency of the Fengyun-4A(FY-4A)satellite indicates the progress of Chinese geostationary meteorological satellites.The characteristics of FY-4A atmosph... The high observation efficiency,scanning speed and observation frequency of the Fengyun-4A(FY-4A)satellite indicates the progress of Chinese geostationary meteorological satellites.The characteristics of FY-4A atmospheric motion vectors(AMVs)derived from the high-level water vapor(WV-High)channel,mid-level water vapor(WV-Mid)channel,and infrared(IR)channel of FY-4A are analyzed,and their corresponding observation errors estimated.Then,the impacts of single-channel and multi-channel FY-4A AMVs on RMAPS-ST(the Rapid-refresh Multi-scale Analysis and Prediction System-Short Term)are evaluated based on one-month data assimilation cycling and forecasting experiments.Results show that the observation errors of FY-4A AMVs from the three channels have an explicit vertical structure.Results from the cycling experiments indicate that the assimilation of AMVs from WV-High produces more apparent improvement of the wind in the upper layer,while a more positive effect in the lower layer is achieved by the assimilation of AMVs from IR.Furthermore,the assimilation of AMVs from IR is more skillful for medium and moderate precipitation than from other channels owing to the good quality of data in the lower layer in the AMVs from IR.Assimilation of FY-4A AMVs from the three channels could combine the advantages of assimilation from each individual channel to improve the wind in the upper,middle and lower layers simultaneously. 展开更多
关键词 data assimilation FY-4A satellite atmospheric motion vector observation error
下载PDF
Using Audiometric Data to Weigh and Prioritize Factors that Affect Workers’ Hearing Loss through Support Vector Machine (SVM) Algorithm 被引量:3
18
作者 Hossein ElahiShirvan MohammadReza Ghotbi-Ravandi +1 位作者 Sajad Zare Mostafa Ghazizadeh Ahsaee 《Sound & Vibration》 EI 2020年第2期99-112,共14页
Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric... Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric data to weigh and prioritize the factors affecting workers’hearing loss based using the Support Vector Machine(SVM)algorithm.This cross sectional-descriptive study was conducted in 2017 in a mining industry in southeast Iran.The participating workers(n=150)were divided into three groups of 50 based on the sound pressure level to which they were exposed(two experimental groups and one control group).Audiometric tests were carried out for all members of each group.The study generally entailed the following steps:(1)selecting predicting variables to weigh and prioritize factors affecting hearing loss;(2)conducting audiometric tests and assessing permanent hearing loss in each ear and then evaluating total hearing loss;(3)categorizing different types of hearing loss;(4)weighing and prioritizing factors that affect hearing loss based on the SVM algorithm;and(5)assessing the error rate and accuracy of the models.The collected data were fed into SPSS 18,followed by conducting linear regression and paired samples t-test.It was revealed that,in the first model(SPL<70 dBA),the frequency of 8 KHz had the greatest impact(with a weight of 33%),while noise had the smallest influence(with a weight of 5%).The accuracy of this model was 100%.In the second model(70<SPL<80 dBA),the frequency of 4 KHz had the most profound effect(with a weight of 21%),whereas the frequency of 250 Hz had the lowest impact(with a weight of 6%).The accuracy of this model was 100%too.In the third model(SPL>85 dBA),the frequency of 4 KHz had the highest impact(with a weight of 22%),while the frequency of 250 Hz had the smallest influence(with a weight of 3%).The accuracy of this model was 100%too.In the fourth model,the frequency of 4 KHz had the greatest effect(with a weight of 24%),while the frequency of 500 Hz had the smallest effect(with a weight of 4%).The accuracy of this model was found to be 94%.According to the modeling conducted using the SVM algorithm,the frequency of 4 KHz has the most profound effect on predicting changes in hearing loss.Given the high accuracy of the obtained model,this algorithm is an appropriate and powerful tool to predict and model hearing loss. 展开更多
关键词 Noise modeling hearing loss data mining support vector machine algorithm
下载PDF
Spatio-temporal Variations of Temperature and Precipitation During 1951–2019 in Arid and Semiarid Region, China 被引量:2
19
作者 HUANG Yufei LU Chunyan +3 位作者 LEI Yifan SU Yue SU Yanlin WANG Zili 《Chinese Geographical Science》 SCIE CSCD 2022年第2期285-301,共17页
Understanding the spatio-temporal variations of temperature and precipitation in the arid and semiarid region of China(ASRC)is of great significance for promoting regional eco-environmental protection and policy-makin... Understanding the spatio-temporal variations of temperature and precipitation in the arid and semiarid region of China(ASRC)is of great significance for promoting regional eco-environmental protection and policy-making.In this study,the annual and seasonal spatio-temporal patterns of change in average temperature and precipitation and their influencing factors in the ASRC were analyzed using the Mann-Kendall test,linear tendency estimation,accumulative anomaly and the Pearson’s correlation coefficient.The results showed that both annual average temperature and average annual precipitation increased in the ASRC during 1951–2019.The temperature rose by about 1.93℃and precipitation increased by about 24 mm.The seasonal average temperature presented a significant increase trend,and the seasonal precipitation was conspicuous ascension in spring and winter.The spatio-temporal patterns of change in temperature and precipitation differed,with the southwest area showing the most obvious variation in each season.Abrupt changes in annual and seasonal average temperature and precipitation occurred mainly around the 1990 s and after 2000,respectively.Atmospheric circulation had an important effect on the trends and abrupt changes in temperature and precipitation.The East Asian summer monsoon had the largest impact on the trend of average annual temperature,as well as on the abrupt changes of annual average temperature and precipitation.Temperature and precipitation changes in the ASRC were influenced by long-term and short-term as well as direct and indirect anthropogenic and natural factors.This study identifies the characteristics of spatio-temporal variations in temperature and precipitation in the ASRC and provides a scientific reference for the formulation of climate change responses. 展开更多
关键词 multi-source remote sensing data TEMPERATURE PRECIPITATION arid and semiarid region spatio-temporal variation atmospheric circulation
下载PDF
Data assimilation using support vector machines and ensemble Kalman filter for multi-layer soil moisture prediction 被引量:1
20
作者 Di LIU Zhong-bo YU Hai-shen LV 《Water Science and Engineering》 EI CAS 2010年第4期361-377,共17页
Hybrid data assimilation (DA) is a method seeing more use in recent hydrology and water resources research. In this study, a DA method coupled with the support vector machines (SVMs) and the ensemble Kalman filter... Hybrid data assimilation (DA) is a method seeing more use in recent hydrology and water resources research. In this study, a DA method coupled with the support vector machines (SVMs) and the ensemble Kalman filter (EnKF) technology was used for the prediction of soil moisture in different soil layers: 0-5 cm, 30 cm, 50 cm, 100 cm, 200 cm, and 300 cm. The SVM methodology was first used to train the ground measurements of soil moisture and meteorological parameters from the Meilin study area, in East China, to construct soil moisture statistical prediction models. Subsequent observations and their statistics were used for predictions, with two approaches: the SVM predictor and the SVM-EnKF model made by coupling the SVM model with the EnKF technique using the DA method. Validation results showed that the proposed SVM-EnKF model can improve the prediction results of soil moisture in different layers, from the surface to the root zone. 展开更多
关键词 data assimilation support vector machines ensemble Kalman filter soil moisture
下载PDF
上一页 1 2 181 下一页 到第
使用帮助 返回顶部