Local binary pattern(LBP)is an important method for texture feature extraction of facial expression.However,it also has the shortcomings of high dimension,slow feature extraction and noeffective local or global featur...Local binary pattern(LBP)is an important method for texture feature extraction of facial expression.However,it also has the shortcomings of high dimension,slow feature extraction and noeffective local or global features extracted.To solve these problems,a facial expression feature extraction method is proposed based on improved LBP.Firstly,LBP is converted into double local binary pattern(DLBP).Then by combining Taylor expansion(TE)with DLBP,DLBP-TE algorithm is obtained.Finally,the DLBP-TE algorithm combined with extreme learning machine(ELM)is applied in seven kinds of ficial expression images and the corresponding experiments are carried out in Japanese adult female facial expression(JAFFE)database.The results show that the proposed method can significantly improve facial expression recognition rate.展开更多
In computer vision,emotion recognition using facial expression images is considered an important research issue.Deep learning advances in recent years have aided in attaining improved results in this issue.According t...In computer vision,emotion recognition using facial expression images is considered an important research issue.Deep learning advances in recent years have aided in attaining improved results in this issue.According to recent studies,multiple facial expressions may be included in facial photographs representing a particular type of emotion.It is feasible and useful to convert face photos into collections of visual words and carry out global expression recognition.The main contribution of this paper is to propose a facial expression recognitionmodel(FERM)depending on an optimized Support Vector Machine(SVM).To test the performance of the proposed model(FERM),AffectNet is used.AffectNet uses 1250 emotion-related keywords in six different languages to search three major search engines and get over 1,000,000 facial photos online.The FERM is composed of three main phases:(i)the Data preparation phase,(ii)Applying grid search for optimization,and(iii)the categorization phase.Linear discriminant analysis(LDA)is used to categorize the data into eight labels(neutral,happy,sad,surprised,fear,disgust,angry,and contempt).Due to using LDA,the performance of categorization via SVM has been obviously enhanced.Grid search is used to find the optimal values for hyperparameters of SVM(C and gamma).The proposed optimized SVM algorithm has achieved an accuracy of 99%and a 98%F1 score.展开更多
A fully automatic facial-expression recognition (FER) system on 3D expression mesh models was proposed. The system didn' t need human interaction from the feature extraction stage till the facial expression classif...A fully automatic facial-expression recognition (FER) system on 3D expression mesh models was proposed. The system didn' t need human interaction from the feature extraction stage till the facial expression classification stage. The features extracted from a 3D expression mesh mod- el were a bunch of radial facial curves to represent the spatial deformation of the geometry features on human face. Each facial curve was a surface line on the 3D face mesh model, begun from the nose tip and ended at the boundary of the previously trimmed 3D face points cloud. Then Euclid dis- tance was employed to calculate the difference between facial curves extracted from the neutral face and each face with different expressions of one person as feature. By employing support vector ma- chine (SVM) as classifier, the experimental results on the well-known 3D-BUFE dataset indicate that the proposed system could better classify the six prototypical facial expressions than state-of-art al- gorithms.展开更多
Herein,a three-stage support vector machine(SVM)for facial expression recognition is proposed.The first stage comprises 21 SVMs,which are all the binary combinations of seven expressions.If one expression is dominant,...Herein,a three-stage support vector machine(SVM)for facial expression recognition is proposed.The first stage comprises 21 SVMs,which are all the binary combinations of seven expressions.If one expression is dominant,then the first stage will suffice;if two are dominant,then the second stage is used;and,if three are dominant,the third stage is used.These multilevel stages help reduce the possibility of experiencing an error as much as possible.Different image preprocessing stages are used to ensure that the features attained from the face detected have a meaningful and proper contribution to the classification stage.Facial expressions are created as a result of muscle movements on the face.These subtle movements are detected by the histogram-oriented gradient feature,because it is sensitive to the shapes of objects.The features attained are then used to train the three-stage SVM.Two different validation methods were used:the leave-one-out and K-fold tests.Experimental results on three databases(Japanese Female Facial Expression,Extended Cohn-Kanade Dataset,and Radboud Faces Database)show that the proposed system is competitive and has better performance compared with other works.展开更多
The facial landmarks can provide valuable information for expression-related tasks.However,most approaches only use landmarks for segmentation preprocessing or directly input them into the neural network for fully con...The facial landmarks can provide valuable information for expression-related tasks.However,most approaches only use landmarks for segmentation preprocessing or directly input them into the neural network for fully connection.Such simple combination not only fails to pass the spatial information to network,but also increases calculation amounts.The method proposed in this paper aims to integrate facial landmarks-driven representation into the triplet network.The spatial information provided by landmarks is introduced into the feature extraction process,so that the model can better capture the location relationship.In addition,coordinate information is also integrated into the triple loss calculation to further enhance similarity prediction.Specifically,for each image,the coordinates of 68 landmarks are detected,and then a region attention map based on these landmarks is generated.For the feature map output by the shallow convolutional layer,it will be multiplied with the attention map to correct the feature activation,so as to strengthen the key region and weaken the unimportant region.Finally,the optimized embedding output can be further used for downstream tasks.Three embeddings of three images output by the network can be regarded as a triplet representation for similarity computation.Through the CK+dataset,the effectiveness of such an optimized feature extraction is verified.After that,it is applied to facial expression similarity tasks.The results on the facial expression comparison(FEC)dataset show that the accuracy rate will be significantly improved after the landmark information is introduced.展开更多
The facial expression recognition systn using the Ariaboost based on the Split Rectangle feature is proposed in this paper. This system provides more various featmes in increasing speed and accuracy than the Haarolike...The facial expression recognition systn using the Ariaboost based on the Split Rectangle feature is proposed in this paper. This system provides more various featmes in increasing speed and accuracy than the Haarolike featrue of Viola, which is commonly used for the Adaboost training algorithm. The Split Rectangle feature uses the nmsk-like shape composed with 2 independent rectangles, instead of using mask-like shape of Haar-like feature, which is composed of 2 --4 adhered rectangles of Viola. Split Rectangle feature has less di- verged operation than the Haar-like feaze. It also requires less oper- ation because the stun of pixels requires ordy two rectangles. Split Rectangle feature provides various and fast features to the Adaboost, which produrces the strong classifier with increased accuracy and speed. In the experiment, the system had 5.92 ms performance speed and 84 %--94 % accuracy by leaming 5 facial expressions, neutral, happiness, sadness, anger and surprise with the use of the Adaboost based on the Split Rectangle feature.展开更多
This article proposes a feature extraction method for an integrated face tracking and facial expression recognition in real time video. The method proposed by Viola and Jones [1] is used to detect the face region in t...This article proposes a feature extraction method for an integrated face tracking and facial expression recognition in real time video. The method proposed by Viola and Jones [1] is used to detect the face region in the first frame of the video. A rectangular bounding box is fitted over for the face region and the detected face is tracked in the successive frames using the cascaded Support vector machine (SVM) and cascaded Radial basis function neural network (RBFNN). The haar-like features are extracted from the detected face region and they are used to create a cascaded SVM and RBFNN classifiers. Each stage of the SVM classifier and RBFNN classifier rejects the non-face regions and pass the face regions to the next stage in the cascade thereby efficiently tracking the face. The performance of tracking is evaluated using one hour video data. The performance of the cascaded SVM is compared with the cascaded RBFNN. The experiment results show that the proposed cascaded SVM classifier method gives better performance over the RBFNN and also the methods described in the literature using single SVM classifier [2]. While the face is being tracked, features are extracted from the mouth region for expression recognition. The features are modelled using a multi-class SVM. The SVM finds an optimal hyperplane to distinguish different facial expressions with an accuracy of 96.0%.展开更多
In this paper, we conduct research on novel and new facial expression modelling method. Although human facial expression recognition ability is stronger, but the computer to implement is a lot of diffi culties and the...In this paper, we conduct research on novel and new facial expression modelling method. Although human facial expression recognition ability is stronger, but the computer to implement is a lot of diffi culties and the displays in: establish facial expression model and sentiment classifi cation, and put them with the changes in the facial features and expressions. Face is a fl exible body instead of rigid body, it is diffi cult to relate facial movement and facial expression change, according to the characteristics of the face image sequence established dynamic expression model that is a complete description of the dynamic expression of the process. Under this condition, in this paper, we propose the novel perspectives of the issues that are meaningful and innovative.展开更多
Most present research into facial expression recognition focuses on the visible spectrum, which is sen- sitive to illumination change. In this paper, we focus on in- tegrating thermal infrared data with visible spectr...Most present research into facial expression recognition focuses on the visible spectrum, which is sen- sitive to illumination change. In this paper, we focus on in- tegrating thermal infrared data with visible spectrum images for spontaneous facial expression recognition. First, the ac- tive appearance model AAM parameters and three defined head motion features are extracted from visible spectrum im- ages, and several thermal statistical features are extracted from infrared (IR) images. Second, feature selection is per- formed using the F-test statistic. Third, Bayesian networks BNs and support vector machines SVMs are proposed for both decision-level and feature-level fusion. Experiments on the natural visible and infrared facial expression (NVIE) spontaneous database show the effectiveness of the proposed methods, and demonstrate thermal 1R images' supplementary role for visible facial expression recognition.展开更多
A new method to extract person-independent expression feature based on higher-order singular value decomposition (HOSVD) is proposed for facial expression recognition. Based on the assumption that similar persons ha...A new method to extract person-independent expression feature based on higher-order singular value decomposition (HOSVD) is proposed for facial expression recognition. Based on the assumption that similar persons have similar facial expression appearance and shape, the person-similarity weighted expression feature is proposed to estimate the expression feature of test persons. As a result, the estimated expression feature can reduce the influence of individuals caused by insufficient training data, and hence become less person-dependent. The proposed method is tested on Cohn-Kanade facial expression database and Japanese female facial expression (JAFFE) database. Person-independent experimental results show the superiority of the proposed method over the existing methods.展开更多
Automated Facial Expression Recognition(FER)serves as the backbone of patient monitoring systems,security,and surveillance systems.Real-time FER is a challenging task,due to the uncontrolled nature of the environment ...Automated Facial Expression Recognition(FER)serves as the backbone of patient monitoring systems,security,and surveillance systems.Real-time FER is a challenging task,due to the uncontrolled nature of the environment and poor quality of input frames.In this paper,a novel FER framework has been proposed for patient monitoring.Preprocessing is performed using contrast-limited adaptive enhancement and the dataset is balanced using augmentation.Two lightweight efficient Convolution Neural Network(CNN)models MobileNetV2 and Neural search Architecture Network Mobile(NasNetMobile)are trained,and feature vectors are extracted.The Whale Optimization Algorithm(WOA)is utilized to remove irrelevant features from these vectors.Finally,the optimized features are serially fused to pass them to the classifier.A comprehensive set of experiments were carried out for the evaluation of real-time image datasets FER-2013,MMA,and CK+to report performance based on various metrics.Accuracy results show that the proposed model has achieved 82.5%accuracy and performed better in comparison to the state-of-the-art classification techniques in terms of accuracy.We would like to highlight that the proposed technique has achieved better accuracy by using 2.8 times lesser number of features.展开更多
Facial expression recognition(FER) in video has attracted the increasing interest and many approaches have been made.The crucial problem of classifying a given video sequence into several basic emotions is how to fuse...Facial expression recognition(FER) in video has attracted the increasing interest and many approaches have been made.The crucial problem of classifying a given video sequence into several basic emotions is how to fuse facial features of individual frames.In this paper, a frame-level attention module is integrated into an improved VGG-based frame work and a lightweight facial expression recognition method is proposed.The proposed network takes a sub video cut from an experimental video sequence as its input and generates a fixed-dimension representation.The VGG-based network with an enhanced branch embeds face images into feature vectors.The frame-level attention module learns weights which are used to adaptively aggregate the feature vectors to form a single discriminative video representation.Finally, a regression module outputs the classification results.The experimental results on CK+and AFEW databases show that the recognition rates of the proposed method can achieve the state-of-the-art performance.展开更多
文摘Local binary pattern(LBP)is an important method for texture feature extraction of facial expression.However,it also has the shortcomings of high dimension,slow feature extraction and noeffective local or global features extracted.To solve these problems,a facial expression feature extraction method is proposed based on improved LBP.Firstly,LBP is converted into double local binary pattern(DLBP).Then by combining Taylor expansion(TE)with DLBP,DLBP-TE algorithm is obtained.Finally,the DLBP-TE algorithm combined with extreme learning machine(ELM)is applied in seven kinds of ficial expression images and the corresponding experiments are carried out in Japanese adult female facial expression(JAFFE)database.The results show that the proposed method can significantly improve facial expression recognition rate.
文摘In computer vision,emotion recognition using facial expression images is considered an important research issue.Deep learning advances in recent years have aided in attaining improved results in this issue.According to recent studies,multiple facial expressions may be included in facial photographs representing a particular type of emotion.It is feasible and useful to convert face photos into collections of visual words and carry out global expression recognition.The main contribution of this paper is to propose a facial expression recognitionmodel(FERM)depending on an optimized Support Vector Machine(SVM).To test the performance of the proposed model(FERM),AffectNet is used.AffectNet uses 1250 emotion-related keywords in six different languages to search three major search engines and get over 1,000,000 facial photos online.The FERM is composed of three main phases:(i)the Data preparation phase,(ii)Applying grid search for optimization,and(iii)the categorization phase.Linear discriminant analysis(LDA)is used to categorize the data into eight labels(neutral,happy,sad,surprised,fear,disgust,angry,and contempt).Due to using LDA,the performance of categorization via SVM has been obviously enhanced.Grid search is used to find the optimal values for hyperparameters of SVM(C and gamma).The proposed optimized SVM algorithm has achieved an accuracy of 99%and a 98%F1 score.
基金Supported by the National Natural Science Foundation of China(60772066)
文摘A fully automatic facial-expression recognition (FER) system on 3D expression mesh models was proposed. The system didn' t need human interaction from the feature extraction stage till the facial expression classification stage. The features extracted from a 3D expression mesh mod- el were a bunch of radial facial curves to represent the spatial deformation of the geometry features on human face. Each facial curve was a surface line on the 3D face mesh model, begun from the nose tip and ended at the boundary of the previously trimmed 3D face points cloud. Then Euclid dis- tance was employed to calculate the difference between facial curves extracted from the neutral face and each face with different expressions of one person as feature. By employing support vector ma- chine (SVM) as classifier, the experimental results on the well-known 3D-BUFE dataset indicate that the proposed system could better classify the six prototypical facial expressions than state-of-art al- gorithms.
文摘Herein,a three-stage support vector machine(SVM)for facial expression recognition is proposed.The first stage comprises 21 SVMs,which are all the binary combinations of seven expressions.If one expression is dominant,then the first stage will suffice;if two are dominant,then the second stage is used;and,if three are dominant,the third stage is used.These multilevel stages help reduce the possibility of experiencing an error as much as possible.Different image preprocessing stages are used to ensure that the features attained from the face detected have a meaningful and proper contribution to the classification stage.Facial expressions are created as a result of muscle movements on the face.These subtle movements are detected by the histogram-oriented gradient feature,because it is sensitive to the shapes of objects.The features attained are then used to train the three-stage SVM.Two different validation methods were used:the leave-one-out and K-fold tests.Experimental results on three databases(Japanese Female Facial Expression,Extended Cohn-Kanade Dataset,and Radboud Faces Database)show that the proposed system is competitive and has better performance compared with other works.
文摘The facial landmarks can provide valuable information for expression-related tasks.However,most approaches only use landmarks for segmentation preprocessing or directly input them into the neural network for fully connection.Such simple combination not only fails to pass the spatial information to network,but also increases calculation amounts.The method proposed in this paper aims to integrate facial landmarks-driven representation into the triplet network.The spatial information provided by landmarks is introduced into the feature extraction process,so that the model can better capture the location relationship.In addition,coordinate information is also integrated into the triple loss calculation to further enhance similarity prediction.Specifically,for each image,the coordinates of 68 landmarks are detected,and then a region attention map based on these landmarks is generated.For the feature map output by the shallow convolutional layer,it will be multiplied with the attention map to correct the feature activation,so as to strengthen the key region and weaken the unimportant region.Finally,the optimized embedding output can be further used for downstream tasks.Three embeddings of three images output by the network can be regarded as a triplet representation for similarity computation.Through the CK+dataset,the effectiveness of such an optimized feature extraction is verified.After that,it is applied to facial expression similarity tasks.The results on the facial expression comparison(FEC)dataset show that the accuracy rate will be significantly improved after the landmark information is introduced.
基金supported by the Brain Korea 21 Project in2010,the MKE(The Ministry of Knowledge Economy),Koreathe ITRC(Information Technology Research Center)support programsupervised by the NIPA(National ITIndustry Promotion Agency)(NI-PA-2010-(C1090-1021-0010))
文摘The facial expression recognition systn using the Ariaboost based on the Split Rectangle feature is proposed in this paper. This system provides more various featmes in increasing speed and accuracy than the Haarolike featrue of Viola, which is commonly used for the Adaboost training algorithm. The Split Rectangle feature uses the nmsk-like shape composed with 2 independent rectangles, instead of using mask-like shape of Haar-like feature, which is composed of 2 --4 adhered rectangles of Viola. Split Rectangle feature has less di- verged operation than the Haar-like feaze. It also requires less oper- ation because the stun of pixels requires ordy two rectangles. Split Rectangle feature provides various and fast features to the Adaboost, which produrces the strong classifier with increased accuracy and speed. In the experiment, the system had 5.92 ms performance speed and 84 %--94 % accuracy by leaming 5 facial expressions, neutral, happiness, sadness, anger and surprise with the use of the Adaboost based on the Split Rectangle feature.
文摘This article proposes a feature extraction method for an integrated face tracking and facial expression recognition in real time video. The method proposed by Viola and Jones [1] is used to detect the face region in the first frame of the video. A rectangular bounding box is fitted over for the face region and the detected face is tracked in the successive frames using the cascaded Support vector machine (SVM) and cascaded Radial basis function neural network (RBFNN). The haar-like features are extracted from the detected face region and they are used to create a cascaded SVM and RBFNN classifiers. Each stage of the SVM classifier and RBFNN classifier rejects the non-face regions and pass the face regions to the next stage in the cascade thereby efficiently tracking the face. The performance of tracking is evaluated using one hour video data. The performance of the cascaded SVM is compared with the cascaded RBFNN. The experiment results show that the proposed cascaded SVM classifier method gives better performance over the RBFNN and also the methods described in the literature using single SVM classifier [2]. While the face is being tracked, features are extracted from the mouth region for expression recognition. The features are modelled using a multi-class SVM. The SVM finds an optimal hyperplane to distinguish different facial expressions with an accuracy of 96.0%.
文摘In this paper, we conduct research on novel and new facial expression modelling method. Although human facial expression recognition ability is stronger, but the computer to implement is a lot of diffi culties and the displays in: establish facial expression model and sentiment classifi cation, and put them with the changes in the facial features and expressions. Face is a fl exible body instead of rigid body, it is diffi cult to relate facial movement and facial expression change, according to the characteristics of the face image sequence established dynamic expression model that is a complete description of the dynamic expression of the process. Under this condition, in this paper, we propose the novel perspectives of the issues that are meaningful and innovative.
文摘Most present research into facial expression recognition focuses on the visible spectrum, which is sen- sitive to illumination change. In this paper, we focus on in- tegrating thermal infrared data with visible spectrum images for spontaneous facial expression recognition. First, the ac- tive appearance model AAM parameters and three defined head motion features are extracted from visible spectrum im- ages, and several thermal statistical features are extracted from infrared (IR) images. Second, feature selection is per- formed using the F-test statistic. Third, Bayesian networks BNs and support vector machines SVMs are proposed for both decision-level and feature-level fusion. Experiments on the natural visible and infrared facial expression (NVIE) spontaneous database show the effectiveness of the proposed methods, and demonstrate thermal 1R images' supplementary role for visible facial expression recognition.
基金supported by National Natural Science Foundation of China (6087208460940008)+2 种基金Beijing Training Programming Foundation for the Talents (20081D1600300343)Excellent Young Scholar Research Fund of Beijing Institute of Technology (2007Y0305)Fundamental Research Foundation of Beijing Institute of Technology (20080342005)
文摘A new method to extract person-independent expression feature based on higher-order singular value decomposition (HOSVD) is proposed for facial expression recognition. Based on the assumption that similar persons have similar facial expression appearance and shape, the person-similarity weighted expression feature is proposed to estimate the expression feature of test persons. As a result, the estimated expression feature can reduce the influence of individuals caused by insufficient training data, and hence become less person-dependent. The proposed method is tested on Cohn-Kanade facial expression database and Japanese female facial expression (JAFFE) database. Person-independent experimental results show the superiority of the proposed method over the existing methods.
基金Researchers Supporting Project Number(RSP2022R458),King Saud University,Riyadh,Saudi Arabia.
文摘Automated Facial Expression Recognition(FER)serves as the backbone of patient monitoring systems,security,and surveillance systems.Real-time FER is a challenging task,due to the uncontrolled nature of the environment and poor quality of input frames.In this paper,a novel FER framework has been proposed for patient monitoring.Preprocessing is performed using contrast-limited adaptive enhancement and the dataset is balanced using augmentation.Two lightweight efficient Convolution Neural Network(CNN)models MobileNetV2 and Neural search Architecture Network Mobile(NasNetMobile)are trained,and feature vectors are extracted.The Whale Optimization Algorithm(WOA)is utilized to remove irrelevant features from these vectors.Finally,the optimized features are serially fused to pass them to the classifier.A comprehensive set of experiments were carried out for the evaluation of real-time image datasets FER-2013,MMA,and CK+to report performance based on various metrics.Accuracy results show that the proposed model has achieved 82.5%accuracy and performed better in comparison to the state-of-the-art classification techniques in terms of accuracy.We would like to highlight that the proposed technique has achieved better accuracy by using 2.8 times lesser number of features.
基金Supported by the Future Network Scientific Research Fund Project of Jiangsu Province (No. FNSRFP2021YB26)the Jiangsu Key R&D Fund on Social Development (No. BE2022789)the Science Foundation of Nanjing Institute of Technology (No. ZKJ202003)。
文摘Facial expression recognition(FER) in video has attracted the increasing interest and many approaches have been made.The crucial problem of classifying a given video sequence into several basic emotions is how to fuse facial features of individual frames.In this paper, a frame-level attention module is integrated into an improved VGG-based frame work and a lightweight facial expression recognition method is proposed.The proposed network takes a sub video cut from an experimental video sequence as its input and generates a fixed-dimension representation.The VGG-based network with an enhanced branch embeds face images into feature vectors.The frame-level attention module learns weights which are used to adaptively aggregate the feature vectors to form a single discriminative video representation.Finally, a regression module outputs the classification results.The experimental results on CK+and AFEW databases show that the recognition rates of the proposed method can achieve the state-of-the-art performance.