Lancang-Mekong River Basin is one of ecoregions with rich biodiversity and high ecological values in the world. The basin has been strongly affected by human activities, particularly by dam construction. This study wa...Lancang-Mekong River Basin is one of ecoregions with rich biodiversity and high ecological values in the world. The basin has been strongly affected by human activities, particularly by dam construction. This study was conducted to investigate the vegetation distribution patterns in the dam areas along middle-low reach of the Lancang-Mekong River in Yunnan Province of China, where eight cascade dams have been planned or are being constructed. To identify the vegetation composition and structure, we sampled 126 quadrats along the transects arrayed vertically to both side of river channel from the year of 2004 to 2010. We found that the forest, shrub and grass communities were widely spread along the riverside. In low reach watershed of the Lancang-Mekong River, the dominated vegetations were grasses and shrubs which were severely disturbed by human activity. In middle reach of the Lancang-Mekong River, the dry-hot valley vegetation was found in the low valley. At high altitude, the pine forest and semi-evergreen seasonal forest were found. As a result of dam construction and operation, the structure and compositions of riparian vegetation were strongly changed. Some plants declined or disappeared due to the alteration of their habitats. The protection or restoration interventions are urgently needed to mitigate the risk of vegetation damage associated with dam projects along middle and low reach of the Lancang-Mekong River.展开更多
Saturated hydraulic conductivity (Ks) is an important soil hydraulic parameter for charactering the rate of water flow across the soils and is mainly related to its high spatial variability. In a small watershed with ...Saturated hydraulic conductivity (Ks) is an important soil hydraulic parameter for charactering the rate of water flow across the soils and is mainly related to its high spatial variability. In a small watershed with the area of 0.27 km2 in the Loess Plateau, Ks of 197 soil samples under different vegetations and landforms were measured. Ks had a moderate variability for total samples. The forestland had high Ks with low coefficient of variation (CV), but the grassland in the watershed bottom had low Ks with big CV. Ks had moderate correlation in space distribution and combined both structural and random factors. At the N-S and E-W directions of watershed being parallel and normal to the stream valley, Ks had relatively weak correlation, indicating that the random factor was the dominate reason causing spatial variance. At the NE-SW and SE-NW directions, Ks had relatively strong correlation due to structural factors such as geomorphology and vegetation distribution patterns. Kriging optimal estimation method was used to produce Ks contour map. The Kriging standard deviation (SD) was the lowest near the sampling points, and increased along with the distance to sampling points. In the Loess Plateau region, soil texture is relatively even, and the vegetation distribution pattern was the key factor affecting spatial variability of Ks.展开更多
文摘Lancang-Mekong River Basin is one of ecoregions with rich biodiversity and high ecological values in the world. The basin has been strongly affected by human activities, particularly by dam construction. This study was conducted to investigate the vegetation distribution patterns in the dam areas along middle-low reach of the Lancang-Mekong River in Yunnan Province of China, where eight cascade dams have been planned or are being constructed. To identify the vegetation composition and structure, we sampled 126 quadrats along the transects arrayed vertically to both side of river channel from the year of 2004 to 2010. We found that the forest, shrub and grass communities were widely spread along the riverside. In low reach watershed of the Lancang-Mekong River, the dominated vegetations were grasses and shrubs which were severely disturbed by human activity. In middle reach of the Lancang-Mekong River, the dry-hot valley vegetation was found in the low valley. At high altitude, the pine forest and semi-evergreen seasonal forest were found. As a result of dam construction and operation, the structure and compositions of riparian vegetation were strongly changed. Some plants declined or disappeared due to the alteration of their habitats. The protection or restoration interventions are urgently needed to mitigate the risk of vegetation damage associated with dam projects along middle and low reach of the Lancang-Mekong River.
基金National NaturalScience Foundation grant (40474178, 30230290)Shaanxi Provincial Office of Education special projects (05JK241)
文摘Saturated hydraulic conductivity (Ks) is an important soil hydraulic parameter for charactering the rate of water flow across the soils and is mainly related to its high spatial variability. In a small watershed with the area of 0.27 km2 in the Loess Plateau, Ks of 197 soil samples under different vegetations and landforms were measured. Ks had a moderate variability for total samples. The forestland had high Ks with low coefficient of variation (CV), but the grassland in the watershed bottom had low Ks with big CV. Ks had moderate correlation in space distribution and combined both structural and random factors. At the N-S and E-W directions of watershed being parallel and normal to the stream valley, Ks had relatively weak correlation, indicating that the random factor was the dominate reason causing spatial variance. At the NE-SW and SE-NW directions, Ks had relatively strong correlation due to structural factors such as geomorphology and vegetation distribution patterns. Kriging optimal estimation method was used to produce Ks contour map. The Kriging standard deviation (SD) was the lowest near the sampling points, and increased along with the distance to sampling points. In the Loess Plateau region, soil texture is relatively even, and the vegetation distribution pattern was the key factor affecting spatial variability of Ks.