期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Analysis and prediction of global vegetation dynamics:past variations and future perspectives
1
作者 Guangchao Li Wei Chen +4 位作者 Liqiang Mu Xuepeng Zhang Pengshuai Bi Zhe Wang Zhen Yang 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第2期317-332,共16页
Spatiotemporal dynamic vegetation changes affect global climate change,energy balances and the hydrological cycle.Predicting these dynamics over a long time series is important for the study and analysis of global env... Spatiotemporal dynamic vegetation changes affect global climate change,energy balances and the hydrological cycle.Predicting these dynamics over a long time series is important for the study and analysis of global environmental change.Based on leaf area index(LAI),climate,and radiation flux data of past and future scenarios,this study looked at historical dynamic changes in global vegetation LAI,and proposed a coupled multiple linear regression and improved gray model(CMLRIGM)to predict future global LAI.The results show that CMLRIGM predictions are more accurate than results predicted by the multiple linear regression(MLR)model or the improved gray model(IGM)alone.This coupled model can effectively resolve the problem posed by the underestimation of annual average of global vegetation LAI predicted by MLR and the overestimate predicted by IGM.From 1981 to 2018,the annual average of LAI in most areas covered by global vegetation(71.4%)showed an increase with a growth rate of 0.0028 a-1;of this area,significant increases occurred in 34.42%of the total area.From 2016 to 2060,the CMLRIGM model has predicted that the annual average global vegetation LAI will increase,accounting for approximately 68.5%of the global vegetation coverage,with a growth rate of 0.004 a-1.The growth rate will increase in the future scenario,and it may be related to the driving factors of the high emission scenario used in this study.This research may provide a basis for simulating spatiotemporal dynamic changes in global vegetation conditions over a long time series. 展开更多
关键词 vegetation dynamics LAI CMLRIGM PREDICTION CLIMATE RADIATION
下载PDF
Improving Simulations of Vegetation Dynamics over the Tibetan Plateau:Role of Atmospheric Forcing Data and Spatial Resolution
2
作者 Zhijie KANG Bo QIU +3 位作者 Zheng XIANG Ye LIU Zhiqiang LIN Weidong GUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第7期1115-1132,I0018-I0022,共23页
The efficacy of vegetation dynamics simulations in offline land surface models(LSMs)largely depends on the quality and spatial resolution of meteorological forcing data.In this study,the Princeton Global Meteorologica... The efficacy of vegetation dynamics simulations in offline land surface models(LSMs)largely depends on the quality and spatial resolution of meteorological forcing data.In this study,the Princeton Global Meteorological Forcing Data(PMFD)and the high spatial resolution and upscaled China Meteorological Forcing Data(CMFD)were used to drive the Simplified Simple Biosphere model version 4/Top-down Representation of Interactive Foliage and Flora Including Dynamics(SSiB4/TRIFFID)and investigate how meteorological forcing datasets with different spatial resolutions affect simulations over the Tibetan Plateau(TP),a region with complex topography and sparse observations.By comparing the monthly Leaf Area Index(LAI)and Gross Primary Production(GPP)against observations,we found that SSiB4/TRIFFID driven by upscaled CMFD improved the performance in simulating the spatial distributions of LAI and GPP over the TP,reducing RMSEs by 24.3%and 20.5%,respectively.The multi-year averaged GPP decreased from 364.68 gC m^(-2)yr^(-1)to 241.21 gC m^(-2)yr^(-1)with the percentage bias dropping from 50.2%to-1.7%.When using the high spatial resolution CMFD,the RMSEs of the spatial distributions of LAI and GPP simulations were further reduced by 7.5%and 9.5%,respectively.This study highlights the importance of more realistic and high-resolution forcing data in simulating vegetation growth and carbon exchange between the atmosphere and biosphere over the TP. 展开更多
关键词 SSiB4 meteorological forcing data vegetation dynamics spatial resolution Tibetan Plateau
下载PDF
Impact of anthropogenic activities on vegetation dynamics in a reservoir area: model establishment and a case study of Longkaikou Reservoir in China
3
作者 YANG Wei PEI Jun +1 位作者 CAI Yan-peng YI Yu-jun 《Journal of Mountain Science》 SCIE CSCD 2021年第7期1823-1836,共14页
Vegetation in hot and arid valleys is a crucial indicator of ecosystem health,but is vulnerable to human activities and environmental change.Using the Longkaikou Reservoir in the Jinsha River in southwestern China as ... Vegetation in hot and arid valleys is a crucial indicator of ecosystem health,but is vulnerable to human activities and environmental change.Using the Longkaikou Reservoir in the Jinsha River in southwestern China as a case study,we developed a spatially explicit model that combined the plant growth,fruiting,seed dispersal,and seed germination stages to reveal the potential impact of multiple human activities(reservoir construction,logging,grazing,and aerial seeding) on the vegetation dynamics of Dodonaea viscosa and Pinus yunnanensis.After reservoir construction,the grassland area of 68 km^(2) in 2003 decreased to 24 km^(2) in 2018,replaced by forest,shrubland,and bodies of water,and the precipitation increased during the dry season,which indicated the improvement of the local plant and soil environment.Our model predicted that when soil moisture decreased by more than 20% compared to current levels,the area of D.viscosa increased greatly at low elevations;however,when at higher soil moisture,P.yunnanensis would occupy more of the study area.Logging and grazing would slightly change the spatial pattern of vegetation and delay P.yunnanensis communities from achieving stability by directly reducing plant biomass.Countermeasures such as aerial seeding would increase the total area by 13.13 km^(2) and 8.09 km^(2) of two plants,respectively,and accelerate the stabilization of plant communities.The effects of multiple human activities on vegetation may counteract each other;for example,logging decreased the P.yunnanensis area whereas aerial seeding increased it,and plant biomass changed in response to this pressure.Given the complex relationships between vegetation and human impacts,our study provides a scientific basis for vegetation restoration and ecological security in this hot and arid valley. 展开更多
关键词 Spatially explicit model vegetation dynamics Human activities Longkaikou Reservoir
下载PDF
Vegetation dynamics and its response to driving factors in typical karst regions,Guizhou Province,China 被引量:1
4
作者 Xiaocha WEI Qiuwen ZHOU +5 位作者 Ya LUO Mingyong CAI Xu ZHOU Weihong YAN Dawei PENG Ji ZHANG 《Frontiers of Earth Science》 SCIE CAS CSCD 2021年第1期167-183,共17页
Analyzing the vegetation dynamics and its response to driving factors provides a vital reference for understanding regional ecological processes and ecosystem services.However,this issue has been poorly understood in ... Analyzing the vegetation dynamics and its response to driving factors provides a vital reference for understanding regional ecological processes and ecosystem services.However,this issue has been poorly understood in karst areas.Taking Guizhou Province as a case study,based on the Normalized-Difference Vegetation Index of the Global Inventory Modeling and Mapping Studies and on meteorological data sets during 1982-2015,we evaluated vegetation dynamics and its response to climatic factors and human activities.We used several methods:the Mann-Kendall test,rescaled range analysis,partial correlation analysis,and residual analysis.The results are as follows:1)the mean annual Normalized-Difference Vegetation Index was 0.46 and exhibited a significant increasing trend with a variation rate of 0.01/10a during 1982-2015 in Guizhou Province.The vegetation cover showed was spatially heterogeneous:High vegetation cover was distributed mainly in the center and western margin of the study area,while the other parts of the study area mainly distributed with low vegetation cover,although the vegetation cover was higher in the nonkarst areas than in the karst areas;2)in general,the climate was getting warmer and drier in Guizhou Province during 1982-2015.Vegetation cover was positively correlated with temperature and negatively correlated with precipitation.Compared to precipitation,temperature was the dominant climatic factor impacting vegetation dynamics;3)'large-scale ecological restoration projects have obviously increased vegetation cover in Guizhou Province in recent years.The contribution of human activities to vegetation changes was 76%,while the contribution of climatic factors was 24%.In summary,compared to natural forces such as climatic factors and geographic parameters,human activities were the main factor driving the vegetation dynamics in Guizhou Province. 展开更多
关键词 vegetation dynamics climate change human activities karst area
原文传递
Vegetation dynamics and its response to climate change during the past 2000 years in the Altai Mountains,northwestern China
5
作者 Dongliang ZHANG Yunpeng YANG +3 位作者 Min RAN Bo LAN Hongyan ZHAO Qi LIU 《Frontiers of Earth Science》 SCIE CSCD 2022年第2期513-522,共10页
Over the past 2000 years,a high-resolution pollen record from the Yushenkule Peat(46°45′-46°57′N,90°46′-90°61′E,2374 m a.s.l.)in the south-eastern Altai Mountains of northwestern China has been... Over the past 2000 years,a high-resolution pollen record from the Yushenkule Peat(46°45′-46°57′N,90°46′-90°61′E,2374 m a.s.l.)in the south-eastern Altai Mountains of northwestern China has been used to explore the changes in vegetation and climate.The regional vegetation has been dominated by alpine meadows revealed from pollen diagrams over the past 2000 years.The pollen-based climate was warm and wet during the Roman Warm Period(0-520 AD),cold and wet during the Dark Age Cold Period(520-900 AD),warm and wet during the Medieval Warm Period(900-1300 AD),and cold and dry during the Little Ice Age(1300-1850 AD).Combined with other pollen data from the Altai Mountains,we found that the percentage of arboreal pollen showed a reduced trend along the NW-SE gradient with decreasing moisture and increasing climatic continentality of the Altai Mountains over the past 2000 years;this is consistent with modern distributions of taiga forests.We also found that the taiga(Pinus forest)have spread slightly,while the steppe(Artemisia,Poaceae and Chenopodiaceae)have recovered significantly in the Altai Mountains over the past 2000 years.In addition,the relatively warm-wet climate may promote high grassland productivity and southward expansion of steppe,which favors the formation of Mongol political and military power. 展开更多
关键词 pollen analysis vegetation dynamics past 2000 years Altai mountains northwestern China
原文传递
Spatio-temporal variations in trends of vegetation and drought changes in relation to climate variability from 1982 to 2019 based on remote sensing data from East Asia
6
作者 Shahzad ALI Abdul BASIT +4 位作者 Muhammad UMAIR Tyan Alice MAKANDA Fahim Ullah KHAN Siqi SHI NI Jian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第10期3193-3208,共16页
Studying the significant impacts on vegetation of drought due to global warming is crucial in order to understand its dynamics and interrelationships with temperature,rainfall,and normalized difference vegetation inde... Studying the significant impacts on vegetation of drought due to global warming is crucial in order to understand its dynamics and interrelationships with temperature,rainfall,and normalized difference vegetation index(NDVI).These factors are linked to excesses drought frequency and severity on the regional scale,and their effect on vegetation remains an important topic for climate change study.East Asia is very sensitive and susceptible to climate change.In this study,we examined the effect of drought on the seasonal variations of vegetation in relation to climate variability and determined which growing seasons are most vulnerable to drought risk;and then explored the spatio-temporal evolution of the trend in drought changes in East Asia from 1982 to 2019.The data were studied using a series of several drought indexes,and the data were then classified using a heat map,box and whisker plot analysis,and principal component analysis.The various drought indexes from January to August improved rapidly,except for vegetation health index(VHI)and temperature condition index(TCI).While these indices were constant in September,they increased again in October,but in December,they showed a descending trend.The seasonal and monthly analysis of the drought indexes and the heat map confirmed that the East Asian region suffered from extreme droughts in 1984,1993,2007,and 2012among the study years.The distribution of the trend in drought changes indicated that more severe drought occurred in the northwestern region than in the southeastern area of East Asia.The drought tendency slope was used to describe the changes in drought events during 1982–2019 in the study region.The correlations among monthly precipitation anomaly percentage(NAP),NDVI,TCI,vegetation condition index(VCI),temperature vegetation drought index(TVDI),and VHI indicated considerably positive correlations,while considerably negative correlations were found among the three pairs of NDVI and VHI,TVDI and VHI,and NDVI and TCI.This ecological and climatic mechanism provides a good basis for the assessment of vegetation and drought-change variations within the East Asian region.This study is a step forward in monitoring the seasonal variation of vegetation and variations in drought dynamics within the East Asian region,which will serve and contribute to the better management of vegetation,disaster risk,and drought in the East Asian region. 展开更多
关键词 climate change drought severity vegetation dynamics heat mapping TVDI spatial correlation East Asia
下载PDF
Dynamics of mediterranean pine forests reforested after fires
7
作者 Álvaro Enríquez-de-Salamanca 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第2期345-354,共10页
Forest fires are frequent under a Mediterranean climate and have shaped the landscape of the region but are currently altered by human action and climate change.Fires have historically conditioned the presence of pine... Forest fires are frequent under a Mediterranean climate and have shaped the landscape of the region but are currently altered by human action and climate change.Fires have historically conditioned the presence of pine forests,depending on severity and forest regeneration.Regeneration of Mediterranean pine forests is not always successful,and a transition to shrublands or stands of resprouting species can occur,even after reforestation.This study analyses vegetation changes in two Mediterranean pine forests after severe fires and both reforested.The pines had difficulty to regenerate,even despite post-fire reforestation.The problem is the difficulty of young seedlings to survive,possibly due to increased summer drought.Problems are greater in pine species at the limit of their ecological tolerance:Pinus pinea had a much better recovery success while P.sylvestris and P.nigra virtually disappeared.Pinus pinaster had intermediate results but recovery was generally poor.A transition has taken place in many burnt areas to scrubland or to thickets of the resprouting Quercus rotundifolia,although it is not possible to know whether they will evolve into forests or remain in a sub climatic state.Resprouting species may increase fire severity but facilitates post-fire colonisation.Post-fire recovery difficulties are closely linked to issues of natural regeneration.Fire could initiate the disappearance of pine forests,but even in the absence of fire they may disappear in the long-term due to the lack of regeneration.Action is needed to increase the resilience of these forests,ensuring natural regeneration,and incorporating resprouting species in the understorey. 展开更多
关键词 Mediterranean region Pine forests Post-fi re recovery vegetation dynamics Wildfi re transitions
下载PDF
Monitoring vegetation drought in the nine major river basins of China based on a new developed Vegetation Drought Condition Index
8
作者 ZHAO Lili LI Lusheng +4 位作者 LI Yanbin ZHONG Huayu ZHANG Fang ZHU Junzhen DING Yibo 《Journal of Arid Land》 SCIE CSCD 2023年第12期1421-1438,共18页
The effect of global climate change on vegetation growth is variable.Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation,and even regional protection of ecolo... The effect of global climate change on vegetation growth is variable.Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation,and even regional protection of ecological environments.In this study,we constructed a new drought index(i.e.,Vegetation Drought Condition Index(VDCI))based on precipitation,potential evapotranspiration,soil moisture and Normalized Difference Vegetation Index(NDVI)data,to monitor vegetation drought in the nine major river basins(including the Songhua River and Liaohe River Basin,Haihe River Basin,Yellow River Basin,Huaihe River Basin,Yangtze River Basin,Southeast River Basin,Pearl River Basin,Southwest River Basin and Continental River Basin)in China at 1-month–12-month(T1–T12)time scales.We used the Pearson's correlation coefficients to assess the relationships between the drought indices(the developed VDCI and traditional drought indices including the Standardized Precipitation Evapotranspiration Index(SPEI),Standardized Soil Moisture Index(SSMI)and Self-calibrating Palmer Drought Severity Index(scPDSI))and the NDVI at T1–T12 time scales,and to estimate and compare the lag times of vegetation response to drought among different drought indices.The results showed that precipitation and potential evapotranspiration have positive and major influences on vegetation in the nine major river basins at T1–T6 time scales.Soil moisture shows a lower degree of negative influence on vegetation in different river basins at multiple time scales.Potential evapotranspiration shows a higher degree of positive influence on vegetation,and it acts as the primary influencing factor with higher area proportion at multiple time scales in different river basins.The VDCI has a stronger relationship with the NDVI in the Songhua River and Liaohe River Basin,Haihe River Basin,Yellow River Basin,Huaihe River Basin and Yangtze River Basin at T1–T4 time scales.In general,the VDCI is more sensitive(with shorter lag time of vegetation response to drought)than the traditional drought indices(SPEI,scPDSI and SSMI)in monitoring vegetation drought,and thus it could be applied to monitor short-term vegetation drought.The VDCI developed in the study can reveal the law of unclear mechanisms between vegetation and climate,and can be applied in other fields of vegetation drought monitoring with complex mechanisms. 展开更多
关键词 vegetation drought vegetation Drought Condition Index(VDCI) Normalized Difference vegetation Index(NDVI) vegetation dynamics climate change China
下载PDF
Different Responses of Vegetation to Frozen Ground Degradation in the Source Region of the Yellow River from 1980 to 2018 被引量:4
9
作者 WANG Rui DONG Zhibao ZHOU Zhengchao 《Chinese Geographical Science》 SCIE CSCD 2020年第4期557-571,共15页
Frozen ground degradation under a warming climate profoundly influences the growth of alpine vegetation in the source region of the Qinghai-Tibet Plateau.This study investigated spatiotemporal variations in the frozen... Frozen ground degradation under a warming climate profoundly influences the growth of alpine vegetation in the source region of the Qinghai-Tibet Plateau.This study investigated spatiotemporal variations in the frozen ground distribution,the active layer thickness(ALT)of permafrost(PF)soil and the soil freeze depth(SFD)in seasonally frozen soil from 1980 to 2018 using the temperature at the top of permafrost(TTOP)model and Stefan equation.We compared the effects of these variations on vegetation growth among different frozen ground types and vegetation types in the source region of the Yellow River(SRYR).The results showed that approximately half of the PF area(20.37%of the SRYR)was projected to degrade into seasonally frozen ground(SFG)during the past four decades;furthermore,the areal average ALT increased by 3.47 cm/yr,and the areal average SFD decreased by 0.93 cm/yr from 1980 to 2018.Accordingly,the growing season Normalized Difference Vegetation Index(NDVI)presented an increasing trend of 0.002/10 yr,and the increase rate and proportion of areas with NDVI increase were largest in the transition zone where PF degraded to SFG(the PF to SFG zone).A correlation analysis indicated that variations in ALT and SFD in the SRYR were significantly correlated with increases of NDVI in the growing season.However,a rapid decrease in SFD(<-1.4 cm/10 yr)could have reduced the soil moisture and,thus,decreased the NDVI.The NDVI for most vegetation types exhibited a significant positive correlation with ALT and a negative correlation with SFD.However,the steppe NDVI exhibited a significant negative correlation with the SFD in the PF to SFG zone but a positive correlation in the SFG zone,which was mainly limited by water condition because of different change rates of the SFD. 展开更多
关键词 PERMAFROST seasonally frozen ground vegetation dynamics climate change source region of the Yellow River
下载PDF
Spatial-temporal dynamics of alpine grassland coverage and its response to climate warming in Mt.Qomolangma Nature Preserve during 2000-2019 被引量:2
10
作者 MA Fei PENG Pei-hao 《Journal of Mountain Science》 SCIE CSCD 2022年第8期2297-2311,共15页
The Qinghai-Tibet Plateau(QTP)has the largest and highest alpine grassland ecosystem in the world,which is considered to be the most sensitive and vulnerable ecosystem to climate change.Its dynamic changes and driving... The Qinghai-Tibet Plateau(QTP)has the largest and highest alpine grassland ecosystem in the world,which is considered to be the most sensitive and vulnerable ecosystem to climate change.Its dynamic changes and driving mechanism have always been widely researched.The Qomolangma National Nature Preserve(QNNP),with the largest altitude difference in the world,was selected as the study area to analyse the spatial-temporal dynamics of grassland coverage and the different characteristics of elevation gradients at the southern slope(SS)and northern slope(NS)with MODIS MOD13Q1 NDVI and MOD11A2 land surface temperature data from 2000to 2019 using the Mann-Kendall trend test and Theil-Sen slope methods.Further,the response mechanism of grassland coverage to climate warming is discussed.The results revealed that from 2000 to 2019,the grassland coverage change in the study area is mainly stable.The increased area proportion of grassland coverage on the southern slope is significantly higher than that on the northern slope,and the decreased area proportion of grassland coverage on the northern slope is significantly greater than that on the southern slope.The change characteristics of grassland coverage in the QNNP exhibit an obvious elevation gradient;the higher the elevation,the greater the increased area proportion of grassland coverage,particularly on the SS.The land surface temperature can be used as a proxy for analysing the temporal and spatial variation trends of air temperature in the QNNP.With the increase of the altitude,the land surface temperature rise rate on both the southern slope and northern slope exhibited an increasing trend,and the sensitivity of grassland coverage to temperature rise was higher on the northern slope.The water condition was the decisive factor for the horizontal and vertical spatial heterogeneity of the dynamic change of grassland coverage,and the melting of glaciers and thawing of permafrost were important sources of water for grassland growth in the QNNP.Climate warming promotes the growth of grassland in areas with a sufficient water supply,but adversely affects the growth of grassland in areas with insufficient water supplies,which will be further intensified by human activities. 展开更多
关键词 Alpine grassland Global warming vegetation dynamic Elevation gradient Qomolangma
下载PDF
Assessing the vulnerability of ecosystems to climate change based on climate exposure, vegetation stability and productivity 被引量:2
11
作者 Kai Xu Xiangping Wang +1 位作者 Chao Jiang Osbert Jianxin Sun 《Forest Ecosystems》 SCIE CSCD 2020年第3期315-326,共12页
Background: Global warming has brought many negative impacts on terrestrial ecosystems, which makes the vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment... Background: Global warming has brought many negative impacts on terrestrial ecosystems, which makes the vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment method based on the IPCC definition of vulnerability. The exposure to future climate was characterized using a moisture index(MI) that integrates the effects of temperature and precipitation. Vegetation stability, defined as the proportion of intact natural vegetation that remains unchanged under changing climate, was used together with vegetation productivity trend to represent the sensitivity and adaptability of ecosystems. Using this method, we evaluated the vulnerability of ecosystems in Southwestern China under two future representative concentration pathways(RCP 4.5 and RCP 8.5) with MC2 dynamic global vegetation model.Results:(1) Future(2017–2100) climate change will leave 7.4%(under RCP 4.5) and 57.4% of(under RCP 8.5) of areas under high or very high vulnerable climate exposure;(2) in terms of vegetation stability, nearly 45% of the study area will show high or very high vulnerability under both RCPs. Beside the impacts of human disturbance on natural vegetation coverage(vegetation intactness), climate change will cause obvious latitudinal movements in vegetation distribution, but the direction of movements under two RCPs were opposite due to the difference in water availability;(3) vegetation productivity in most areas will generally increase and remain a low vulnerability in the future;(4) an assessment based on the above three aspects together indicated that future climate change will generally have an adverse impact on all ecosystems in Southwestern China, with non-vulnerable areas account for only about 3% of the study area under both RCPs. However, compared with RCP 4.5, the areas with mid-and highvulnerability under RCP 8.5 scenario increased by 13% and 16%, respectively.Conclusion: Analyses of future climate exposure and projected vegetation distribution indicate widespread vulnerability of ecosystems in Southwestern China, while vegetation productivity in most areas will show an increasing trend to the end of twenty-first century. Based on new climate indicators and improved vulnerability assessment rules, our method provides an extra option for a more comprehensive evaluation of ecosystem vulnerability, and should be further tested at larger spatial scales in order to provide references for regional, or even global, ecosystem conservation works. 展开更多
关键词 Climate change Ecosystem vulnerability Dynamic global vegetation model vegetation stability vegetation productivity Southwestern China
下载PDF
Compounding effects of human activities and climatic changes on coexistence of oasis-desert ecosystems:Prioritizing resilient decision-making for a riskier world
12
作者 XinWei Yin Wei Liu +11 位作者 Meng Zhu JuTao Zhang Qi Feng HaiYang Xi LinShan Yang Tuo Han WenJu Cheng YingQing Su BaiTing Zhang YuanYuan Xue ZeXia Chen LingGe Wang 《Research in Cold and Arid Regions》 CSCD 2023年第5期219-229,共11页
Water-salt balance is critical for the stable coexistence of salt-affected and groundwater-fed oasis-desert ecosystems. Yet, a comprehensive investigation of how soil salinization and groundwater degradation threaten ... Water-salt balance is critical for the stable coexistence of salt-affected and groundwater-fed oasis-desert ecosystems. Yet, a comprehensive investigation of how soil salinization and groundwater degradation threaten the coexistence of oasis-desert ecosystems is still scarce, especially under the compounding effects of human activities and climatic changes. Here, we assessed the impacts of irrigated agriculture on hydrological regimes in oasisdesert systems, investigated the spatio-temporal variations of soil salinization in irrigated cropland, and evaluated the implications of the interplays of soil salinization and groundwater degradation on the coexistence of oasis-desert ecosystems in northwestern China, based on meaningful modelling approaches and comprehensive measurements over 1995–2020. The results showed that the irrigation return flow coefficient decreased sharply from 0.21 ± 0.09 in the traditional irrigation period to 0.09 ± 0.01 in the water-saving irrigation period. The continuous drop in groundwater tables and significant degradation of groundwater quality are occurring throughout this watershed. The eco-environmental flows are reaching to their limit with watershed closures(i.e.,the drainage from the oasis region into the desert region is being weakened or even eliminated), although these progressions were largely hidden by regional precipitation and streamflow variability. The process of salt migration and accumulation across different landscapes in oasis-desert system is being reshaped, and soil salinization in water-saving agricultural irrigated lands is accelerating with a regional average annual growth rate of18%. The vegetation in this watershed is degrading, and anthropogenic disturbance accelerates this trend. Our results highlight that environmental stress adaptation strategies must account for resilience maintenance to avoid accelerating catastrophic transitions in oasis-desert ecosystems. Determining the optimal oasis scales and formulating the best irrigation management plans are effective and resilient decision-making ways to maintain the coexistence relationship of oasis-desert ecosystem in drylands. 展开更多
关键词 Oasis-desert ecosystems Hydrological regimes Soil salinization vegetation dynamics Resilient decision-making
下载PDF
Floristic Composition, Diversity and Structure of the Rainforest in the Mayoko District, Republic of Congo
13
作者 Margaretha W.van Rooyen Noel van Rooyen +3 位作者 Edmond S.Miabangana Gilbert Nsongola Caroline Vasicek Gaugris Jérome Y.Gaugris 《Open Journal of Forestry》 2019年第1期16-69,共54页
Botanically, the Mayoko district is known only through anecdotal descriptions made in the colonial era. The present study was undertaken as part of the prerequisite for a mining feasibility study where a benchmark of ... Botanically, the Mayoko district is known only through anecdotal descriptions made in the colonial era. The present study was undertaken as part of the prerequisite for a mining feasibility study where a benchmark of the floristic composition, diversity and structure of the vegetation was needed to evaluate potential biodiversity offset areas and to guide species selection for post-mining re-vegetation. The study area comprised approximately 160,000 ha and 235 sample sites were surveyed using the Braun-Blanquet method of phytosociology. Diversity of each plant association was expressed in terms of various diversity parameters. Twelve associations were described and mapped. The associations ranged from highly disturbed and degraded to fairly intact forest associations. A wet to dry gradient and permanently inundated to temporary inundated gradient could also be distinguished. The approach followed here proved remarkably robust in illustrating the complexity in a topographically complex region of the Chaillu Massif. The data provided a high level of insight into the possible dynamics of the rainforest and indications as to possible successional pathways. This information provides a better level of understanding of forest structure and evolution potential than studies limited to trees, remote sensing carbon assessments, or time change series. 展开更多
关键词 CONGO DIVERSITY EVENNESS Fisher’s Alpha Flora PHYTOSOCIOLOGY Species Richness STRUCTURE RAINFOREST vegetation dynamics
下载PDF
Feedback and contribution of vegetation, air temperature and precipitation to land surface temperature in the Yangtze River Basin considering statistical analysis
14
作者 Jinlian Liu Xinyao Zhou +6 位作者 Hanya Tang Fengqin Yan Shiwei Liu Xuguang Tang Zhi Ding Ke Jiang Pujia Yu 《International Journal of Digital Earth》 SCIE EI 2023年第1期2941-2961,共21页
Land surface temperature(LST),especially day-night LST difference(LSTd-LSTn),is a key variable for the stability of terrestrial ecosystems,affected by vegetation and climate change.Quantifying the contribution and fee... Land surface temperature(LST),especially day-night LST difference(LSTd-LSTn),is a key variable for the stability of terrestrial ecosystems,affected by vegetation and climate change.Quantifying the contribution and feedback of vegetation and climate to LST changes is critical to developing mitigation strategies.Based on LST,Normalized vegetation index(NDVI),land use(LU),air temperature(AT)and precipitation(Pre)from 2003 to 2021,partial correlation was used to analyze the response of LST to vegetation and climate.The feedback and contribution of both to LST were further quantifed by using spatial linear relationships and partial derivatives analysis.The results showed that both interannual LST(LSTy)and LSTd-LSTn responded negatively to vegetation,and vegetation had a negative feedback effect in areas with significantly altered.Vegetation was also a major contributor to the decline of LSTd-LSTn.With the advantage of positive partial correlation area of 94.99%,AT became the main driving factor and contributor to LSTy change trend.Pre contributed negatively to both LSTy and LSTd-LSTn,with contributions of-0.004℃/y and-0.022℃/y,respectively.AT played a decisive role in LST warming of YRB,which was partially mitigated by vegetation and Pre.The present research contributed'to,the,detection,of LST changes and improved understanding of the driving mechanism. 展开更多
关键词 Land surface temperature vegetation dynamics climate change land use CONTRIBUTION FEEDBACK
原文传递
Vegetation biomass dynamics in a desert ecosystem in NW China
15
《Science Foundation in China》 CAS 2017年第3期40-40,共1页
Subject Code:D01With the support by the National Natural Science Foundation of China,a collaborative study by Prof.Wang Xinping(王新平)from the Northwest Institute of Eco-Environment and Resources,Chinese Academy of S... Subject Code:D01With the support by the National Natural Science Foundation of China,a collaborative study by Prof.Wang Xinping(王新平)from the Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences and the research group led by Prof.Ignacio Rodriguez-Iturbe from 展开更多
关键词 vegetation biomass dynamics in a desert ecosystem in NW China
原文传递
Assimilation of NDVI data in a land surface-Vegetation model for leaf area index predictions in a tree-grass ecosystem
16
作者 Nicola Montaldo Andrea Gaspa Roberto Corona 《International Journal of Digital Earth》 SCIE EI 2023年第1期3810-3837,共28页
Periodic observations of vegetation index,such as the normalized difference vegetation index(NDVI),can be used for data assimilation in heterogenous ecosystems.Indeed,the new Sentinel 2 Multispectral instrument and La... Periodic observations of vegetation index,such as the normalized difference vegetation index(NDVI),can be used for data assimilation in heterogenous ecosystems.Indeed,the new Sentinel 2 Multispectral instrument and Landsat 8 Operational Land Imager sensor data are available at such high temporal and spatial resolutions that can be used to detect the patches of the main vegetation components(grass and trees)of heterogenous ecosystems,and capture their dynamics.We demonstrate the possibility to merge grass and tree NDVI observations and models,to optimally provide robust predictions of grass and tree leaf area index.The proposed assimilation approach assimilates NDVI data through the Ensemble Kalman filter(EnKF)and dynamically calibrates a key vegetation dynamic model parameter,the maintenance respiration coeffcient(ma).In the presence of large bias of the grass and tree ma base values,only the use of the proposed assimilation approach removes the large bias in the biomass balance,dynamically calibrating maintenance respiration coefficients,and corrects the model.The performance of a land surface-vegetation model was improved by assimilating observations of NDVl.The effective impact of the proposed assimilation approach on the evapotranspiration and CO_(2) uptake predictions in the heterogenous ecosystem is also demonstrated. 展开更多
关键词 Data assimilation leaf area index heterogenous ecosystem vegetation dynamic model Landsat 8 Sentinel 2
原文传递
Satellite-observed changes in terrestrial vegetation growth trends across the Asia-Pacific region associated with land cover and climate from 1982 to 2011 被引量:3
17
作者 Baozhang Chen Guang Xu +2 位作者 Nicholas C.Coops Philippe Ciais Ranga B.Myneni 《International Journal of Digital Earth》 SCIE EI CSCD 2016年第11期1055-1076,共22页
The Asia-Pacific(AP)region has experienced faster warming than the global average in recent decades and has experienced more climate extremes,however little is known about the response of vegetation growth to these ch... The Asia-Pacific(AP)region has experienced faster warming than the global average in recent decades and has experienced more climate extremes,however little is known about the response of vegetation growth to these changes.The updated Global Inventory Modeling and Mapping Studies third-generation global satellite Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index dataset and gridded reanalysis climate data were used to investigate the spatiotemporal changes in both trends of vegetation dynamic indicators and climatic variables.We then further analyzed their relations associated with land cover across the AP region.The main findings are threefold:(1)at continental scales the AP region overall experienced a gradual and significant increasing trend in vegetation growth during the last three decades,and this NDVI trend corresponded with an insignificant increasing trend in temperature;(2)vegetation growth was negatively and significantly correlated with the Pacific Decadal Oscillation index and the El Niño/Southern Oscillation(ENSO)in AP;and(3)at pixel scales,except for Australia,both vegetation growth and air temperature significantly increased in the majority of study regions and vegetation growth spatially correlated with temperature;In Australia and other water-limited regions vegetation growth positively correlated with precipitation. 展开更多
关键词 vegetation dynamics NDVI climate change land cover Asia-Pacific region
原文传递
Examining the efficacy of revegetation practices in ecosystem restoration programs:insights from a hotspot of sandstorm in northern China 被引量:1
18
作者 Ziqiang DU Rong RONG +1 位作者 Zhitao WU Hong ZHANG 《Frontiers of Earth Science》 SCIE CSCD 2021年第4期922-935,共14页
Retrospectively evaluating the efficacy of revegetation practices is helpful in planning and imple-menting future ecosystem restoration programs(ERP).Having a good understanding of how human activities can affect vege... Retrospectively evaluating the efficacy of revegetation practices is helpful in planning and imple-menting future ecosystem restoration programs(ERP).Having a good understanding of how human activities can affect vegetation cover,both before and after ERP,is particularly important in sandstorm hotspot areas.The Beijing-Tianjin Sandstorm Source Region(BTSSR)is one such area.We conducted an investigation into vegetation dynamics within the BTSSR.This was done using remote sensing data in conjunction with climate data sets and land use data spanning the 1982-2014 period.The relationships between climatic factors(such as precipitation and temperature),and vegetative change were modeled using a neural network method.By a process of residual analysis,the proportions of human-induced vegetative change both before and after the ERP were established.Our results show that:1)before the ERP(1982-2000),40.96%of the study area exhibited significantly progressive vegetation changes(p<0.05).This proportion decreased to encom-pass only 20.23%of the study area in the period following the ERP(2001-2014).2)89.55%of the study area showed signs of human-induced vegetation degradation before the ERP.Between 2001 and 2014 however,following ERP,this figure fell to only 27.78%.3)ERP implementation led to visible improvements in vegetative conditions within the BTSSR,especially in areas where ecological restoration measures were directly and anthropogenically applied.These results highlight the benefits that positive human action(i.e.,revegetation initiatives implemented under the framework of an ERP)have brought to the BTSSR. 展开更多
关键词 vegetation dynamics human activities ERP neural network model Beijing-Tianjin sandstorm source region
原文传递
Assessing the spatio-temporal variability of vegetation productivity in Africa: quantifying the relative roles of climate variability and human activities 被引量:1
19
作者 Sabastine U.Ugbaje Inakwu O.A.Odeh +1 位作者 Thomas F.A.Bishop Jianlong Li 《International Journal of Digital Earth》 SCIE EI 2017年第9期879-900,共22页
Quantitative attribution at the individual pixel level of the relative contributions of climate variability and human activities to vegetation productivity dynamics across Africa is generally lacking.This is because o... Quantitative attribution at the individual pixel level of the relative contributions of climate variability and human activities to vegetation productivity dynamics across Africa is generally lacking.This is because of the difficulty in establishing a baseline or potential vegetation against which the relative impacts of these factors can be assessed.This study addresses these gaps.First,annual potential net primary productivity(NPP_(P))for 2000–2014 was estimated for Africa using a model constructed from samples of NPP and environmental covariates from protected areas.Second,trends in NPP_(P),actual NPP(NPP_(A)),and human-appropriated NPP(NPP_(H)=NPP P−NPP_(A))were estimated and used in quantifying the relative contributions of climate and human activities to NPP dynamics.Over 2000–2014,NPP improvement was largely concentrated in equatorial and northern Africa,while subequatorial Africa exhibited the most NPP decline.Parts of Mali,Burkina Faso,and the central Africa region are associated with the greatest influence of climate-driven NPP improvement.Areas where humans dominated NPP decline include parts of Ethiopia and South Africa.Climate had a stronger role in driving NPP decline in subequatorial Africa.Nonetheless,further work is required to validate the results of this study with high-resolution imagery and field information. 展开更多
关键词 NPP trend analysis vegetation dynamics protected areas Random Forest
原文传递
Indication of paleoecological evidence on the evolution of alpine vegetation productivity and soil erosion in central China since the mid-Holocene
20
作者 Ying CHENG Hongyan LIU +5 位作者 Hongya WANG Deliang CHEN Philippe CIAIS Yao LUO Xiuchen WU &Yi YIN 《Science China Earth Sciences》 SCIE EI CSCD 2021年第10期1774-1783,共10页
Although alpine ecosystems have been commonly recognized as sensitive to recent climate change,few studies have examined its impact on the long-term productivity of vegetation and soil erosion.Using paleoecological re... Although alpine ecosystems have been commonly recognized as sensitive to recent climate change,few studies have examined its impact on the long-term productivity of vegetation and soil erosion.Using paleoecological records,these two aspects were examined in the alpine zone of the Taibai Mountains(elevation,3767 m)in monsoon-dominated East Asia since the middle Holocene.Proxies for the productivity of vegetation and severity of soil erosion from high-resolution alpine lacustrine records show that the productivity and soil erosion were closely related to mean annual temperature and summer precipitation from the East Asian Summer Monsoon(EASM),respectively.Specifically,when the mean annual temperature was low and precipitation was abundant,during 5800–4000 calendar years before the present(cal.yr BP),the alpine ecosystem was characterized by low vegetation productivity and severe soil erosion.However,the productivity increased and soil erosion decreased from 4000 cal.yr BP onwards.These results highlight the role of paleoecological evidence in studying ecosystem services on longer time scales,which is significant in making policies for sustainable development under climate change in regions for which such long-term monitoring data are not available. 展开更多
关键词 POLLEN vegetation dynamics Alpine lake sediments Erosion intensity Paleoecological indicators
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部