In this paper,managed forest(MF)and natural forest(NF)in the Huajiang Demonstration Zone of Guanling,Guizhou were selected as research objects,and cropland(CL)was taken as control.High-throughput sequencing technology...In this paper,managed forest(MF)and natural forest(NF)in the Huajiang Demonstration Zone of Guanling,Guizhou were selected as research objects,and cropland(CL)was taken as control.High-throughput sequencing technology was used to study the characteristics of fungal community composition and species diversity in the surface(0-10 cm)soil of each restoration measure,in order to reveal the dominant soil fungal groups and fungal community composition in karst rocky desertification areas,which was conducive to a more comprehensive understanding of the soil conditions of different vegetation restoration measures.Research has shown that vegetation restoration significantly affected the diversity of soil fungal community,with significant increases in Sob index,Ace index,and Chao index.The vegetation restoration has significantly changed the composition of fungal community.The dominant fungi in the CL topsoil are Sordariomycetes(62.28%),Dothideomycetes(12.34%),and Eurotiomycetes(9.12%);the dominant fungi in the MF soil are Sordariomycetes(45.05%),Dothideomycetes(14.74%),and Mortierellomycetes(10.40%);the dominant fungi in the NF soil are unclassified fungal community(26.38%),Sordariomycetes(19.78%),and Agaricomycetes(13.82%).Vegetation restoration has changed the key fungal groups in the soil.Sordariomycetes,Fusarium,and Setophoma are the key dominant fungal groups in CL soil;Dioszegia is key dominant fungal group in MF soil;c_unclassified_k_Fungi,p_unclassified_k_Fungi,o_unclassified_k_Fungi,f_unclassified_k_Fungi,g_unclassified_k_Fungi,Teichospora,and Diaporthe are key dominant fungal groups in NF soil.展开更多
Vegetation plays an important role in soil and water conservation, water conservation and carbon sequestration of an ecosystem. The restoration of damaged vegetation is of great significance to the maintenance of spec...Vegetation plays an important role in soil and water conservation, water conservation and carbon sequestration of an ecosystem. The restoration of damaged vegetation is of great significance to the maintenance of species diversity and the restoration of the regional ecological environment. It is also one of the most effective measures to improve the fragile ecosystem. This paper summarizes the research results from decades of damaged vegetation recovery in the process of vegetation recovery, the main driving factor and the restoration mode.展开更多
To provide materials for the selection of plant species for vegetation restoration and reconstruction in the farming-pastoral zone in northern China, where the eco-environment has been already deteriorated by over-far...To provide materials for the selection of plant species for vegetation restoration and reconstruction in the farming-pastoral zone in northern China, where the eco-environment has been already deteriorated by over-farming and over-grazing, the suitable trees, shrubs and herbages were examined, screened and identified under the guidance of four principles of taking precedence for ecological conservation, being beneficial to economic production, matching species (trees, shrubs and herbages) with the site, and giving consideration to the integrity of local administrative division. According to the key ecological factors that determine species growth and distribution in the zone, i.e., the lowest daily mean temperature in a year, annual accumulated temperature, and water regimes represented by the moist index, the ratio between annual rainfall and accumulated temperature (>0 degreesC), as well as the soil type influenced by climate, surface substances and landform, the farming-pastoral zone was regionalized into seven parts: ( I) Western Songliao Plain and Da Hinggan Mountain Region; (II) Upper Liaohe River Sandy Region; (III) Mid-Eastern Nei Mongol Plateau and Northwestern Heibei Mountain Region; (IV) Luliang, Taihang and Yanshan Mountain Region; ( V) Ordos Plateau Sandy Region; (VI) Northern Shaanxi to Eastern Gansu Loess Plateau Region; and (VII) Mid Gansu to Eastern Qinghai Plateau Loess Region. And the suitable trees, shrubs and herbages for each region were selected and tabularly introduced in detail.展开更多
[Objective] This study aimed to investigate the artificial vegetations on soil physicochemical properties of sandy land. [Method] The soil physicochemical proper- ties in five representative lands respectively covered...[Objective] This study aimed to investigate the artificial vegetations on soil physicochemical properties of sandy land. [Method] The soil physicochemical proper- ties in five representative lands respectively covered by Artemisia ordosica, Salix cheilophila, Hedysarum scoparium, Populus simonii and Amorpha fruticosa, all of which were planted artificially at the same year were measured in the present study, using a bare soil as the control. [Result] Artificial vegetation improved the soil physicochemical properties by different extents in the lands covered by different plants. The soil physicochemical properties such as bulk density under A. Fruticosa and H. Scoparium were improved greatly. The frequency distribution of soil particle size under artificial vegetations exhibited a bimodal curve. The average soil particle size under A. fruticosa was the smallest, and the soil was very poorly sorted. The soil nutrients in the sandy land were not significantly improved by artificial vegeta- tion. [Conclusion] Artificial vegetation has a certain impact on soil properties in sandy land, as it greatly improves the soil physical properties but not the chemical properties.展开更多
[Objective] The aim was to study the characteristics of main vegetation communities in the limestone region of Taihang Mountain,so as to lay foundation for the further improvement of site conditions and the scientific...[Objective] The aim was to study the characteristics of main vegetation communities in the limestone region of Taihang Mountain,so as to lay foundation for the further improvement of site conditions and the scientific breeding of vegetation used to restore the mountain field in limestone region.[Method] Based on the investigation of various vegetation communities in controlled test area,forbidden region and barren hillsides in Daqing Mountain basin,Beishui Valley,Mancheng County,Hebei Province,the difference among controlled region,forbidden region and barren hillsides could be found through data analysis and composite score,and the modes of vegetation communities in controlled region and forbidden region were compared to select predominant species of arbor,shrub and grass in limestone region.[Result] Under the similar site conditions,nutrient content and physical properties of soil in controlled region and forbidden region were superior to those of barren hillsides,and persimmon had high nutrient content and better physical properties compared with oriental arborvitae in controlled region;soil water maintenance and litter characters in controlled region and forbidden region improved more obviously than that of barren hillsides,and shrubbery in forbidden region was the most excellent,arborvitae and persimmon in controlled region the second;the biomass and the coverage rate of vegetation communities in controlled region and forbidden region were higher than those of barren hillsides,and those of shrubbery in forbidden region were better than tussock in closing hill,while persimmon was better than arborvitae in controlled region.The predominant species of arbor,shrub and herbage were obtained through composite score.[Conclusion] From the aspects of soil nutrient,physical properties,soil water maintenance,litter characters,vegetation biomass,canopy density and coverage,controlled region and forbidden region were superior to barren hillsides,and the selection of predominant species of arbor,shrub and herbage considered both ecological and economic benefits.展开更多
In order to explore effects of vegetation on nutrients in soils, nutrients characters of soils under natural grass, closed grass, abandoned lands, forest lands returned from farmlands and fixed sandy areas in Mu Us De...In order to explore effects of vegetation on nutrients in soils, nutrients characters of soils under natural grass, closed grass, abandoned lands, forest lands returned from farmlands and fixed sandy areas in Mu Us Desert were researched. The results indicated that vegetations in varied types have different effects on organic matter, total N, available N and available P, among which the first three were all higher in soils under closed grass, forest lands returned from farmlands, and fixed sandy lands than those under natural grass and abandoned lands. This was totally contrary with contents of available P in soil. In addition, nutrients in soils at 0-20 cm were more influenced by vegetation, than those at 20-60 cm, and Caragana Korshinskii proved better in improving nutrients in soils.展开更多
In Yuanmou dry-hot valley of Yunnan Province,three typical vegetation restoration patterns including production forest transformed from sloping fields to terracing,ecological afforestation within the gully and ecologi...In Yuanmou dry-hot valley of Yunnan Province,three typical vegetation restoration patterns including production forest transformed from sloping fields to terracing,ecological afforestation within the gully and ecological aforestation in gully head and slope were selected to compare their effects on soil and water conservation.Soil and water loss,soil infiltration rate and the soil moisture dynamics of soil profile with the depth of 0-100 cm of these three patterns and their controls were observed by established standard observation plots in rainy season.The results showed that the soil and water loss of ecological afforestation and production forest terrace reduced by over 30% and 60% compared with their controls(without growth of any vegetation)respectively,showing significant control effect on the soil and water loss.Vegetation restoration also apparently increased the infiltration rate of soil(increased by 100%-200%).In rainy season,the soil moisture content of ecological afforestation and production forest terrace increased by over 30% and 100% compared with their controls.This indicated that vegetation restoration will not lead to soil aridity during the rainy season;vegetation restoration not only reduced the loss of surface water and soil fine particles,but also enhanced the infiltration of precipitation.These two effects made the soil moisture content increase throughout the profile.展开更多
Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabin...Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabina vulgaris on soil physical and chemical properties on the southeastern fringe of the Mu Us Sandy Land,China.We collected soil samples from five depth layers(0-20,20-40,40-60,60-80,and 80-100 cm)in the S.vulgaris plantation plots across four plantation ages(4,7,10,and 16 years)in November 2019,and assessed soil physical(soil bulk density,soil porosity,and soil particle size)and chemical(soil organic carbon(SOC),total nitrogen(TN),available nitrogen(AN),available phosphorus(AP),available potassium(AK),cation-exchange capacity(CEC),salinity,p H,and C/N ratio)properties.The results indicated that the soil predominantly consisted of sand particles(94.27%-99.67%),with the remainder being silt and clay.As plantation age increased,silt and very fine sand contents progressively rose.After 16 years of planting,there was a marked reduction in the mean soil particle size.The initial soil fertility was low and declined from 4 to 10 years of planting before witnessing an improvement.Significant positive correlations were observed for the clay,silt,and very fine sand(mean diameter of 0.000-0.100 mm)with SOC,AK,and p H.In contrast,fine sand and medium sand(mean diameter of 0.100-0.500 mm)showed significant negative correlations with these indicators.Our findings ascertain that the plantation of S.vulgaris requires 10 years to effectively act as a windbreak and contribute to sand fixation,and needs 16 years to improve soil physical and chemical properties.Importantly,these improvements were found to be highly beneficial for vegetation restoration in arid and semi-arid areas.This research can offer valuable insights for the protection and restoration of the vegetation ecosystem in the sandy lands in China.展开更多
Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic cha...Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.展开更多
The research selected three typical areas for plant investigation, including upper reaches of Gangnan Reservoir, the area between Gangnan and downstream of Huangbizhuang Reservoir, and Huangbizhuang Reservoir. The res...The research selected three typical areas for plant investigation, including upper reaches of Gangnan Reservoir, the area between Gangnan and downstream of Huangbizhuang Reservoir, and Huangbizhuang Reservoir. The results showed that affected by water, plant species, species diversity and species richness were all decreasing in varying degrees as the distance with watercourse upper reaches was increasing, but the ratio of Anthropochory plants was growing. The research finally proposed countermeasures, including increasing wetland area, constructing forests and artificial water landscape of Hutuo River and reinforcing watercourse compre- hensive management.展开更多
Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff...Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff plots established on the eastern slope of the Ziwuling secondary forest region, China and a field survey. The results showed that before the secondary vegetation restoration period (before about 1866-1872), soil erosion in the Ziwuling region of the Loess Plateau was similar to the current erosion conditions in neighboring regions, where the soil erosion rate now is 8000 to 10000 t km-2 year-1. After the secondary vegetation restoration, soil erosion was very low; influences of rainfall and slope gradient on soil erosion were small; the vegetation effect on soil erosion was predominant; shallow gully and gully erosion ceased; and sediment deposition occurred in shallow gully and gully channels. In modern times when human activities destroyed secondary forests, soil erosion increased markedly, and erosion rates in the deforested lands reached 10000 to 24000 t km-2 year-1, which was 797 to 1682 times greater than those in the forested land prior to deforestation. Rainfall intensity and landform greatly affected the soil erosion process after deforestation. These results showed that accelerated erosion caused by vegetation destruction played a key role in soil degradation and eco-environmental deterioration in deforested regions.展开更多
The Loess Plateau of China has experienced extensive vegetation restoration in the past several decades, which leads to great changes in soil properties such as soil bulk, porosity, and organic matter with the vegetat...The Loess Plateau of China has experienced extensive vegetation restoration in the past several decades, which leads to great changes in soil properties such as soil bulk, porosity, and organic matter with the vegetation restoration age. And these soil properties have great effect on the soil infiltration and soil hydraulic conductivity. However, the potential changes in soil hydraulic conductivity caused by vegetation restoration age have not been well understood. This study was conducted to investigate the changes in soil hydraulic conductivity under five grasslands with different vegetation restoration ages (3, 10, 18, 28 and 37 years) compared to a slope farmland, and further to identify the factors responsible for these changes on the Loess Plateau of China. At each site, accumulative infiltration amount and soil hydraulic conductivity were determined using a disc permeameter with a water supply pressure of -20 mm. Soil properties were measured for analyzing their potential factors influencing soil hydraulic conductivity. The results showed that the soil bulk had no significant changes over the initial 20 years of restoration (P〉0.05); the total porosity, capillary porosity and field capacity decreased significantly in the grass land with 28 and 37 restoration ages compared to the slope farmland; accumulative infiltration amount and soil hydraulic conductivity were significantly enhanced after 18 years of vegetation restoration. However, accumulative infiltration amount and soil hydraulic conductivity fluctuated over the initial 10 years of restoration. The increase in soil hydraulic conductivity with vegetation restoration was closely related to the changes in soil texture and structure. Soil sand and clay contents were the most influential factors on soil hydraulic conductivity, followed by bulk density, soil porosity, root density and crust thickness. The Pearson correlation coefficients indicated that the soil hydraulic conductivity was affected by multiply factors. These results are helpful to understand the changes in hydrological and erosion processes response to vegetation succession on the Loess Plateau.展开更多
The arid and semi-arid northwestern China has been undergoing ecological degradation and the efforts to reverse the ecological degradation have been undertaken for many years. Some shifting dunes have been fixed and t...The arid and semi-arid northwestern China has been undergoing ecological degradation and the efforts to reverse the ecological degradation have been undertaken for many years. Some shifting dunes have been fixed and the vegetation has been partially recovered in certain areas and the Mu Us Sandy Land in the Ordos Plateau is an example of the success. The present study attempts to reveal the relationships between the vegetation restoration and ecohydrology in the Mu Us Sandy Land. We continuously measured soil water content at 10-min intervals under three vegetation types (i.e., shifting dune, shrub-dominated community, and herb-dominated community) in the Mu Us Sandy Land from April 2012 to October 2013. The results show the infiltration coefficient increased with increased rainfall amount and eventually reached a stable value. Infiltration coefficients were 0.91, 0.64, and 0.74 in the shifting dune, in the shrub-dominated community, and in the herb-dominated community, respectively. Cumulative infiltration and soil texture are two vital factors affecting the depths of rainfall penetration. Only rainfall events larger than 35.0 mm could recharge soil water at the 60-80 cm layer in the herb-dominated community. Our results imply that the expected forward succession of restored vegetation may be destined to deterioration after reaching the climax simply because of following two facts: (1) soil water is mainly retained at shallower layer and (2) plant fine roots mainly distribute in deeper layer in the herb-dominated community.展开更多
Vegetation restoration has been proposed as an effective method for increasing both plant biomass and soil carbon(C) stocks. In this study, 204 publications(733 observations) were analyzed, focusing on the effects of ...Vegetation restoration has been proposed as an effective method for increasing both plant biomass and soil carbon(C) stocks. In this study, 204 publications(733 observations) were analyzed, focusing on the effects of vegetation restoration on soil organic carbon(SOC) in China. The results showed that SOC was increased by 45.33%, 24.43%, 30.29% and 27.98% at soil depths of 0–20 cm, 20–40 cm, 40–60 cm and > 60 cm after vegetation restoration, respectively. Restoration from both cropland and non-cropland increased the SOC content. The conversion of non-cropland was more efficient in SOC accumulation than the conversion of cropland did, especially in > 40 cm layers. In addition, the conversion to planted forest led to greater SOC accumulation than that to other land use did. Conversion period and initial SOC content extended more influence on soil C accumulation as the main factors after vegetation restoration than temperature and precipitation did. The SOC content significantly increased with restoration period after long-term vegetation restoration(> 40 yr), indicating a large potential for further accumulation of carbon in the soil, which could mitigate climate change in the near future.展开更多
Knowledge about the effects of vegetation types on soil properties and on water dynamics in the soil profile is critical for revegetation strategies in water-scarce regions, especially the choice of vegetation type an...Knowledge about the effects of vegetation types on soil properties and on water dynamics in the soil profile is critical for revegetation strategies in water-scarce regions, especially the choice of vegetation type and human management measures. We focused on the analysis of the effects of vegetation type on soil hydrological properties and soil moisture variation in the 0–400 cm soil layer based on a long-term(2004―2016) experimental data in the northern Loess Plateau region, China. Soil bulk density(BD), saturated soil hydraulic conductivity(Ks), field capacity(FC) and soil organic carbon(SOC) in 2016, as well as the volumetric soil moisture content during 2004–2016, were measured in four vegetation types, i.e., shrubland(korshinsk peashrub), artificial grassland(alfalfa), fallow land and cropland(millet or potato). Compared with cropland, revegetation with peashrub and alfalfa significantly decreased BD and increased Ks, FC, and SOC in the 0–40 cm soil layer, and fallow land significantly increased FC and SOC in the 0–10 cm soil layer. Soil water storage(SWS) significantly declined in shrubland and grassland in the 40–400 cm soil layer, causing severe soil drought in the deep soil layers. The study suggested that converting cropland to grassland(alfalfa) and shrubland(peashrub) improved soil-hydrological properties, but worsened water conditions in the deep soil profile. However, natural restoration did not intensify deep-soil drying. The results imply that natural restoration could be better than revegetation with peashrub and alfalfa in terms of good soil hydrological processes in the semi-arid Loess Plateau region.展开更多
Background: Soil and vegetation have a direct impact on the process and direction of plant community succession, and determine the structure, function, and productivity of ecosystems. However, little is known about th...Background: Soil and vegetation have a direct impact on the process and direction of plant community succession, and determine the structure, function, and productivity of ecosystems. However, little is known about the synergistic influence of soil physicochemical properties and vegetation features on vegetation restoration. The aim of this study was to investigate the co-evolution of soil physicochemical properties and vegetation features in the process of vegetation restoration, and to distinguish the primary and secondary relationships between soil and vegetation in their collaborative effects on promoting vegetation restoration in a subtropical area of China.Methods: Soil samples were collected to 40 cm in four distinct plant communities along a restoration gradient from herb(4–5 years), to shrub(11–12 years), to Pinus massoniana coniferous and broadleaved mixed forest(45–46 years), and to evergreen broadleaved forest(old growth forest). Measurements were taken of the soil physicochemical properties and Shannon–Wiener index(SD), diameter at breast height(DBH), height(H), and biomass. Principal component analysis, linear function analysis, and variation partitioning analysis were then performed to prioritize the relative importance of the leading factors affecting vegetation restoration.Results: Soil physicochemical properties and vegetation features showed a significant trend of improvement across the vegetation restoration gradient, reflected mainly in the high response rates of soil organic carbon(SOC)(140.76%), total nitrogen(TN)(222.48%), total phosphorus(TP)(59.54%), alkaline hydrolysis nitrogen(AN)(544.65%),available phosphorus(AP)(53.28%), species diversity(86.3%), biomass(2906.52%), DBH(128.11%), and H(596.97%).The soil properties(pH, SOC, TN, AN, and TP) and vegetation features(biomass, DBH, and H) had a clear coevolutionary relationship over the course of restoration. The synergistic interaction between soil properties and vegetation features had the greatest effect on biomass(55.55%–72.37%), and the soil properties contributed secondarily(3.30%–31.44%). The main impact factors of biomass varied with the restoration periods.Conclusions: In the process of vegetation restoration, soil and vegetation promoted each other. Vegetation restoration was the cumulative result of changes in soil fertility and vegetation features.展开更多
In the last few decades, the Loess Plateau had experienced an extensive vegetation restoration to reduce soil erosion and to improve the degraded ecosystems. However, the dynamics of ecosystem carbon stocks with veget...In the last few decades, the Loess Plateau had experienced an extensive vegetation restoration to reduce soil erosion and to improve the degraded ecosystems. However, the dynamics of ecosystem carbon stocks with vegetation restoration in this region are poorly understood. This study examined the changes of carbon stocks in mineral soil (0-100 cm), plant biomass and the ecosystem (plant and soil) following vegetation restoration with different models and ages. Our results indicated that cultivated land returned to native vegetation (natural restoration) or artificial forest increased ecosystem carbon sequestration. Tree plantation sequestered more carbon than natural vegetation succession over decades scale due to the rapid increase in biomass carbon pool. Restoration ages had different effects on the dynamics of biomass and soil carbon stocks. Biomass carbon stocks increased with vegetation restoration age, while the dynamics of soil carbon stocks were affected by sampling depth. Ecosystem carbon stocks consistently increased after tree plantation regardless of the soil depth; but an initial decrease and then increase trend was observed in natural restoration chronosequences with the soil sampling depth of 0-100 cm. Moreover, there was a time lag of about 15-30 years between biomass production and soil carbon sequestration in 0-100 cm, which indicated a long-term effect of vegetation restoration on deeper soil carbon sequestration.展开更多
Soil moisture, a critical variable in the hydrologic cycle, is highly influenced by vegetation restoration type. However, the relationship between spatial variation of soil moisture, vegetation restoration type and sl...Soil moisture, a critical variable in the hydrologic cycle, is highly influenced by vegetation restoration type. However, the relationship between spatial variation of soil moisture, vegetation restoration type and slope length is controversial. Therefore, soil moisture across soil layers(0-400 cm depth) was measured before and after the rainy season in severe drought(2015) and normal hydrological year(2016) in three vegetation restoration areas(artificial forestland, natural forestland and grassland), on the hillslopes of the Caijiachuan Catchment in the Loess area, China. The results showed that artificial forestland had the lowest soil moisture and most severe water deficit in 100-200 cm soil layers. Water depletion was higher in artificial and natural forestlands than in natural grassland. Moreover, soil moisture in the shallow soil layers(0-100 cm) under the three vegetation restoration types did not significantly vary with slope length, but a significant increase with slope length was observed in deep soil layers(below 100 cm). In2015, a severe drought hydrological year, higher water depletion was observed at lower slope positions under three vegetation restoration types due to higher transpiration and evapotranspiration and unlikely recharge from upslope runoff. However, in 2016, a normal hydrological year, there was lower water depletion, even infiltration recharge at lower slope positions, indicating receiving a large amount of water from upslope. Vegetation restoration type, precipitation, slope length and soil depth during a rainy season, in descending order of influence, had significant effects on soil moisture. Generally, natural grassland is more beneficial for vegetation restoration than natural and artificial forestlands, and the results can provide useful information for understanding hydrological processes and improving vegetation restoration practices on the Loess Plateau展开更多
We evaluated the effects of the number of years of restoration of vegetation on soil microbial community structure and biomass in degraded ecosystems.We investigated the microbial community structure by analyzing thei...We evaluated the effects of the number of years of restoration of vegetation on soil microbial community structure and biomass in degraded ecosystems.We investigated the microbial community structure by analyzing their phospholipid fatty acids then examined microbial biomass carbon and nitrogen by chloroform fumigation extraction of restoration soils over several years.The data were compared with those of highly degraded lands and native vegetation sites.The results show that the duration of vegetation on the sites substantially increased microbial biomass and shifted the microbial community structure even after only 4 years.However,microbial communities and biomass did not recover to the status of native vegetation even after 35 years of vegetation cover.A redundancy analysis and Pearson correlation analysis indicated that soil organic carbon,total nitrogen,available potassium,soil water content,silt content and soil hardness explained 98.4%of total variability in the microbial community composition.Soil organic carbon,total nitrogen,available potassium and soil water content were positively correlated with microbial community structure and biomass,whereas,soil hardness and silt content were negatively related to microbial community structure and biomass.This study provides new insights into microbial community structure and biomass that influence organic carbon,nitrogen,phosphorus and potassium accumulation,and clay content in soils at different stages of restoration.展开更多
A thorough understanding of the vegetation succession in relation to both climatic changes and anthropogenic activities is vital for the formulation of adaptation strategies that address potential ecosystem challenges...A thorough understanding of the vegetation succession in relation to both climatic changes and anthropogenic activities is vital for the formulation of adaptation strategies that address potential ecosystem challenges.Various climatic factors such as temperature,precipitation,and solar radiation,as well as anthropogenic factors such as ecological engineering and population migration,will affect the conditions for vegetation.However,the relationships among various factors remain unclear and the response of vegetation to climate change and anthropogenic activities in the Loess Plateau of China has not been well established.This study investigated the spatio-temporal characteristics and relationships between vegetation coverage and climatic factors in the Loess Plateau for the period of 1985–2015.Further analysis separated the anthropogenic and climatic factors on vegetation succession based on residual analysis.The results showed that the normalized difference vegetation index(NDVI)followed a significant upward trend with annual change rates of 0.15%during 1985–2015.The trend of human-induced NDVI increase was consistent with the spatial distribution of increasing forest areas in the eastern part of the Loess Plateau.Eco-restoration projects were the main driving factors that promoted vegetation coverage on the Loess Plateau.Furthermore,these results demonstrated that migrants to cities in the Loess Plateau could relieve ecological pressures and promote vegetation restoration.Therefore,the government should strive to increase population mobility and restore vegetation to sustain this particularly fragile ecological environment.展开更多
基金Supported by National Natural Science Foundation of China (42177446,41601584)Guizhou Provincial Science and Technology Fund (Qiankehe[2017]1417)Guizhou Normal University (Qianshixinmiao[2022]28).
文摘In this paper,managed forest(MF)and natural forest(NF)in the Huajiang Demonstration Zone of Guanling,Guizhou were selected as research objects,and cropland(CL)was taken as control.High-throughput sequencing technology was used to study the characteristics of fungal community composition and species diversity in the surface(0-10 cm)soil of each restoration measure,in order to reveal the dominant soil fungal groups and fungal community composition in karst rocky desertification areas,which was conducive to a more comprehensive understanding of the soil conditions of different vegetation restoration measures.Research has shown that vegetation restoration significantly affected the diversity of soil fungal community,with significant increases in Sob index,Ace index,and Chao index.The vegetation restoration has significantly changed the composition of fungal community.The dominant fungi in the CL topsoil are Sordariomycetes(62.28%),Dothideomycetes(12.34%),and Eurotiomycetes(9.12%);the dominant fungi in the MF soil are Sordariomycetes(45.05%),Dothideomycetes(14.74%),and Mortierellomycetes(10.40%);the dominant fungi in the NF soil are unclassified fungal community(26.38%),Sordariomycetes(19.78%),and Agaricomycetes(13.82%).Vegetation restoration has changed the key fungal groups in the soil.Sordariomycetes,Fusarium,and Setophoma are the key dominant fungal groups in CL soil;Dioszegia is key dominant fungal group in MF soil;c_unclassified_k_Fungi,p_unclassified_k_Fungi,o_unclassified_k_Fungi,f_unclassified_k_Fungi,g_unclassified_k_Fungi,Teichospora,and Diaporthe are key dominant fungal groups in NF soil.
文摘Vegetation plays an important role in soil and water conservation, water conservation and carbon sequestration of an ecosystem. The restoration of damaged vegetation is of great significance to the maintenance of species diversity and the restoration of the regional ecological environment. It is also one of the most effective measures to improve the fragile ecosystem. This paper summarizes the research results from decades of damaged vegetation recovery in the process of vegetation recovery, the main driving factor and the restoration mode.
文摘To provide materials for the selection of plant species for vegetation restoration and reconstruction in the farming-pastoral zone in northern China, where the eco-environment has been already deteriorated by over-farming and over-grazing, the suitable trees, shrubs and herbages were examined, screened and identified under the guidance of four principles of taking precedence for ecological conservation, being beneficial to economic production, matching species (trees, shrubs and herbages) with the site, and giving consideration to the integrity of local administrative division. According to the key ecological factors that determine species growth and distribution in the zone, i.e., the lowest daily mean temperature in a year, annual accumulated temperature, and water regimes represented by the moist index, the ratio between annual rainfall and accumulated temperature (>0 degreesC), as well as the soil type influenced by climate, surface substances and landform, the farming-pastoral zone was regionalized into seven parts: ( I) Western Songliao Plain and Da Hinggan Mountain Region; (II) Upper Liaohe River Sandy Region; (III) Mid-Eastern Nei Mongol Plateau and Northwestern Heibei Mountain Region; (IV) Luliang, Taihang and Yanshan Mountain Region; ( V) Ordos Plateau Sandy Region; (VI) Northern Shaanxi to Eastern Gansu Loess Plateau Region; and (VII) Mid Gansu to Eastern Qinghai Plateau Loess Region. And the suitable trees, shrubs and herbages for each region were selected and tabularly introduced in detail.
基金Supported by National Key Technology Research and Development Program during the 12th Five-year Plan Period(2012BAD16B0202)Special Fund for Forest Scientific Research in the Public Interest(201004018)~~
文摘[Objective] This study aimed to investigate the artificial vegetations on soil physicochemical properties of sandy land. [Method] The soil physicochemical proper- ties in five representative lands respectively covered by Artemisia ordosica, Salix cheilophila, Hedysarum scoparium, Populus simonii and Amorpha fruticosa, all of which were planted artificially at the same year were measured in the present study, using a bare soil as the control. [Result] Artificial vegetation improved the soil physicochemical properties by different extents in the lands covered by different plants. The soil physicochemical properties such as bulk density under A. Fruticosa and H. Scoparium were improved greatly. The frequency distribution of soil particle size under artificial vegetations exhibited a bimodal curve. The average soil particle size under A. fruticosa was the smallest, and the soil was very poorly sorted. The soil nutrients in the sandy land were not significantly improved by artificial vegeta- tion. [Conclusion] Artificial vegetation has a certain impact on soil properties in sandy land, as it greatly improves the soil physical properties but not the chemical properties.
基金Supported by Hebei Province Natural Foundation (3993173)~~
文摘[Objective] The aim was to study the characteristics of main vegetation communities in the limestone region of Taihang Mountain,so as to lay foundation for the further improvement of site conditions and the scientific breeding of vegetation used to restore the mountain field in limestone region.[Method] Based on the investigation of various vegetation communities in controlled test area,forbidden region and barren hillsides in Daqing Mountain basin,Beishui Valley,Mancheng County,Hebei Province,the difference among controlled region,forbidden region and barren hillsides could be found through data analysis and composite score,and the modes of vegetation communities in controlled region and forbidden region were compared to select predominant species of arbor,shrub and grass in limestone region.[Result] Under the similar site conditions,nutrient content and physical properties of soil in controlled region and forbidden region were superior to those of barren hillsides,and persimmon had high nutrient content and better physical properties compared with oriental arborvitae in controlled region;soil water maintenance and litter characters in controlled region and forbidden region improved more obviously than that of barren hillsides,and shrubbery in forbidden region was the most excellent,arborvitae and persimmon in controlled region the second;the biomass and the coverage rate of vegetation communities in controlled region and forbidden region were higher than those of barren hillsides,and those of shrubbery in forbidden region were better than tussock in closing hill,while persimmon was better than arborvitae in controlled region.The predominant species of arbor,shrub and herbage were obtained through composite score.[Conclusion] From the aspects of soil nutrient,physical properties,soil water maintenance,litter characters,vegetation biomass,canopy density and coverage,controlled region and forbidden region were superior to barren hillsides,and the selection of predominant species of arbor,shrub and herbage considered both ecological and economic benefits.
基金Supported by Projects in the National Science&Technology Pillar Program during the Twelfth Five-Year Plan Period(2012BAD16B0202)National Natural Science Foundation of China(41171002)Scientific Research Foundation of Beijing Normal University~~
文摘In order to explore effects of vegetation on nutrients in soils, nutrients characters of soils under natural grass, closed grass, abandoned lands, forest lands returned from farmlands and fixed sandy areas in Mu Us Desert were researched. The results indicated that vegetations in varied types have different effects on organic matter, total N, available N and available P, among which the first three were all higher in soils under closed grass, forest lands returned from farmlands, and fixed sandy lands than those under natural grass and abandoned lands. This was totally contrary with contents of available P in soil. In addition, nutrients in soils at 0-20 cm were more influenced by vegetation, than those at 20-60 cm, and Caragana Korshinskii proved better in improving nutrients in soils.
基金Supported by National Natural Science Foundation of China(40871013)National Support Scheme Program(2006BAC01A11)~~
文摘In Yuanmou dry-hot valley of Yunnan Province,three typical vegetation restoration patterns including production forest transformed from sloping fields to terracing,ecological afforestation within the gully and ecological aforestation in gully head and slope were selected to compare their effects on soil and water conservation.Soil and water loss,soil infiltration rate and the soil moisture dynamics of soil profile with the depth of 0-100 cm of these three patterns and their controls were observed by established standard observation plots in rainy season.The results showed that the soil and water loss of ecological afforestation and production forest terrace reduced by over 30% and 60% compared with their controls(without growth of any vegetation)respectively,showing significant control effect on the soil and water loss.Vegetation restoration also apparently increased the infiltration rate of soil(increased by 100%-200%).In rainy season,the soil moisture content of ecological afforestation and production forest terrace increased by over 30% and 100% compared with their controls.This indicated that vegetation restoration will not lead to soil aridity during the rainy season;vegetation restoration not only reduced the loss of surface water and soil fine particles,but also enhanced the infiltration of precipitation.These two effects made the soil moisture content increase throughout the profile.
基金funded by the National Natural Science Foundation of China(42171004)the Key Research and Development Program in Shaanxi Province,China(2021ZDLSF05-02)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0403)。
文摘Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabina vulgaris on soil physical and chemical properties on the southeastern fringe of the Mu Us Sandy Land,China.We collected soil samples from five depth layers(0-20,20-40,40-60,60-80,and 80-100 cm)in the S.vulgaris plantation plots across four plantation ages(4,7,10,and 16 years)in November 2019,and assessed soil physical(soil bulk density,soil porosity,and soil particle size)and chemical(soil organic carbon(SOC),total nitrogen(TN),available nitrogen(AN),available phosphorus(AP),available potassium(AK),cation-exchange capacity(CEC),salinity,p H,and C/N ratio)properties.The results indicated that the soil predominantly consisted of sand particles(94.27%-99.67%),with the remainder being silt and clay.As plantation age increased,silt and very fine sand contents progressively rose.After 16 years of planting,there was a marked reduction in the mean soil particle size.The initial soil fertility was low and declined from 4 to 10 years of planting before witnessing an improvement.Significant positive correlations were observed for the clay,silt,and very fine sand(mean diameter of 0.000-0.100 mm)with SOC,AK,and p H.In contrast,fine sand and medium sand(mean diameter of 0.100-0.500 mm)showed significant negative correlations with these indicators.Our findings ascertain that the plantation of S.vulgaris requires 10 years to effectively act as a windbreak and contribute to sand fixation,and needs 16 years to improve soil physical and chemical properties.Importantly,these improvements were found to be highly beneficial for vegetation restoration in arid and semi-arid areas.This research can offer valuable insights for the protection and restoration of the vegetation ecosystem in the sandy lands in China.
基金supported by the Project of Qinghai Science&Technology Department(Grant No.2021-ZJ-956Q).
文摘Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.
基金Supported by Hebei Provincial Natural Science Foundation(D2012302007)Science and Technology Project of Hebei Academy of Sciences(14111)~~
文摘The research selected three typical areas for plant investigation, including upper reaches of Gangnan Reservoir, the area between Gangnan and downstream of Huangbizhuang Reservoir, and Huangbizhuang Reservoir. The results showed that affected by water, plant species, species diversity and species richness were all decreasing in varying degrees as the distance with watercourse upper reaches was increasing, but the ratio of Anthropochory plants was growing. The research finally proposed countermeasures, including increasing wetland area, constructing forests and artificial water landscape of Hutuo River and reinforcing watercourse compre- hensive management.
基金Project supported by the Chinese Academy of Sciences (No. KZCX3-SW-422) and the National Natural Science Foundation of China (Nos. 9032001 and 40335050).
文摘Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff plots established on the eastern slope of the Ziwuling secondary forest region, China and a field survey. The results showed that before the secondary vegetation restoration period (before about 1866-1872), soil erosion in the Ziwuling region of the Loess Plateau was similar to the current erosion conditions in neighboring regions, where the soil erosion rate now is 8000 to 10000 t km-2 year-1. After the secondary vegetation restoration, soil erosion was very low; influences of rainfall and slope gradient on soil erosion were small; the vegetation effect on soil erosion was predominant; shallow gully and gully erosion ceased; and sediment deposition occurred in shallow gully and gully channels. In modern times when human activities destroyed secondary forests, soil erosion increased markedly, and erosion rates in the deforested lands reached 10000 to 24000 t km-2 year-1, which was 797 to 1682 times greater than those in the forested land prior to deforestation. Rainfall intensity and landform greatly affected the soil erosion process after deforestation. These results showed that accelerated erosion caused by vegetation destruction played a key role in soil degradation and eco-environmental deterioration in deforested regions.
基金funded by the by the State Key Program of National Natural Science of China (41330858)the National Natural Science Foundation of China (41471226)the Open Foundation of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau (A318009902-1510)
文摘The Loess Plateau of China has experienced extensive vegetation restoration in the past several decades, which leads to great changes in soil properties such as soil bulk, porosity, and organic matter with the vegetation restoration age. And these soil properties have great effect on the soil infiltration and soil hydraulic conductivity. However, the potential changes in soil hydraulic conductivity caused by vegetation restoration age have not been well understood. This study was conducted to investigate the changes in soil hydraulic conductivity under five grasslands with different vegetation restoration ages (3, 10, 18, 28 and 37 years) compared to a slope farmland, and further to identify the factors responsible for these changes on the Loess Plateau of China. At each site, accumulative infiltration amount and soil hydraulic conductivity were determined using a disc permeameter with a water supply pressure of -20 mm. Soil properties were measured for analyzing their potential factors influencing soil hydraulic conductivity. The results showed that the soil bulk had no significant changes over the initial 20 years of restoration (P〉0.05); the total porosity, capillary porosity and field capacity decreased significantly in the grass land with 28 and 37 restoration ages compared to the slope farmland; accumulative infiltration amount and soil hydraulic conductivity were significantly enhanced after 18 years of vegetation restoration. However, accumulative infiltration amount and soil hydraulic conductivity fluctuated over the initial 10 years of restoration. The increase in soil hydraulic conductivity with vegetation restoration was closely related to the changes in soil texture and structure. Soil sand and clay contents were the most influential factors on soil hydraulic conductivity, followed by bulk density, soil porosity, root density and crust thickness. The Pearson correlation coefficients indicated that the soil hydraulic conductivity was affected by multiply factors. These results are helpful to understand the changes in hydrological and erosion processes response to vegetation succession on the Loess Plateau.
基金supported by the National Natural Science Foundation of China(41130640,41321001,31470402)the Program for Changjiang Scholars and Innovative Research Team in University(IRT1108)the Fundamental Research Funds for the Central Universities(2012CXQT07)
文摘The arid and semi-arid northwestern China has been undergoing ecological degradation and the efforts to reverse the ecological degradation have been undertaken for many years. Some shifting dunes have been fixed and the vegetation has been partially recovered in certain areas and the Mu Us Sandy Land in the Ordos Plateau is an example of the success. The present study attempts to reveal the relationships between the vegetation restoration and ecohydrology in the Mu Us Sandy Land. We continuously measured soil water content at 10-min intervals under three vegetation types (i.e., shifting dune, shrub-dominated community, and herb-dominated community) in the Mu Us Sandy Land from April 2012 to October 2013. The results show the infiltration coefficient increased with increased rainfall amount and eventually reached a stable value. Infiltration coefficients were 0.91, 0.64, and 0.74 in the shifting dune, in the shrub-dominated community, and in the herb-dominated community, respectively. Cumulative infiltration and soil texture are two vital factors affecting the depths of rainfall penetration. Only rainfall events larger than 35.0 mm could recharge soil water at the 60-80 cm layer in the herb-dominated community. Our results imply that the expected forward succession of restored vegetation may be destined to deterioration after reaching the climax simply because of following two facts: (1) soil water is mainly retained at shallower layer and (2) plant fine roots mainly distribute in deeper layer in the herb-dominated community.
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05060104)
文摘Vegetation restoration has been proposed as an effective method for increasing both plant biomass and soil carbon(C) stocks. In this study, 204 publications(733 observations) were analyzed, focusing on the effects of vegetation restoration on soil organic carbon(SOC) in China. The results showed that SOC was increased by 45.33%, 24.43%, 30.29% and 27.98% at soil depths of 0–20 cm, 20–40 cm, 40–60 cm and > 60 cm after vegetation restoration, respectively. Restoration from both cropland and non-cropland increased the SOC content. The conversion of non-cropland was more efficient in SOC accumulation than the conversion of cropland did, especially in > 40 cm layers. In addition, the conversion to planted forest led to greater SOC accumulation than that to other land use did. Conversion period and initial SOC content extended more influence on soil C accumulation as the main factors after vegetation restoration than temperature and precipitation did. The SOC content significantly increased with restoration period after long-term vegetation restoration(> 40 yr), indicating a large potential for further accumulation of carbon in the soil, which could mitigate climate change in the near future.
基金supported by the National Natural Science Foundation of China (41501233,41601216,41390461)the National Key Project for Research and Development (2016YFC0501605)+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2017076)the Open Research Fund of the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau (A314021402-1806)
文摘Knowledge about the effects of vegetation types on soil properties and on water dynamics in the soil profile is critical for revegetation strategies in water-scarce regions, especially the choice of vegetation type and human management measures. We focused on the analysis of the effects of vegetation type on soil hydrological properties and soil moisture variation in the 0–400 cm soil layer based on a long-term(2004―2016) experimental data in the northern Loess Plateau region, China. Soil bulk density(BD), saturated soil hydraulic conductivity(Ks), field capacity(FC) and soil organic carbon(SOC) in 2016, as well as the volumetric soil moisture content during 2004–2016, were measured in four vegetation types, i.e., shrubland(korshinsk peashrub), artificial grassland(alfalfa), fallow land and cropland(millet or potato). Compared with cropland, revegetation with peashrub and alfalfa significantly decreased BD and increased Ks, FC, and SOC in the 0–40 cm soil layer, and fallow land significantly increased FC and SOC in the 0–10 cm soil layer. Soil water storage(SWS) significantly declined in shrubland and grassland in the 40–400 cm soil layer, causing severe soil drought in the deep soil layers. The study suggested that converting cropland to grassland(alfalfa) and shrubland(peashrub) improved soil-hydrological properties, but worsened water conditions in the deep soil profile. However, natural restoration did not intensify deep-soil drying. The results imply that natural restoration could be better than revegetation with peashrub and alfalfa in terms of good soil hydrological processes in the semi-arid Loess Plateau region.
基金supported by the National Forestry Public Welfare Industry Research Project (grant no. 201504411)the National Natural Science Foundation of China (grant nos. 31570447 and 31300524)。
文摘Background: Soil and vegetation have a direct impact on the process and direction of plant community succession, and determine the structure, function, and productivity of ecosystems. However, little is known about the synergistic influence of soil physicochemical properties and vegetation features on vegetation restoration. The aim of this study was to investigate the co-evolution of soil physicochemical properties and vegetation features in the process of vegetation restoration, and to distinguish the primary and secondary relationships between soil and vegetation in their collaborative effects on promoting vegetation restoration in a subtropical area of China.Methods: Soil samples were collected to 40 cm in four distinct plant communities along a restoration gradient from herb(4–5 years), to shrub(11–12 years), to Pinus massoniana coniferous and broadleaved mixed forest(45–46 years), and to evergreen broadleaved forest(old growth forest). Measurements were taken of the soil physicochemical properties and Shannon–Wiener index(SD), diameter at breast height(DBH), height(H), and biomass. Principal component analysis, linear function analysis, and variation partitioning analysis were then performed to prioritize the relative importance of the leading factors affecting vegetation restoration.Results: Soil physicochemical properties and vegetation features showed a significant trend of improvement across the vegetation restoration gradient, reflected mainly in the high response rates of soil organic carbon(SOC)(140.76%), total nitrogen(TN)(222.48%), total phosphorus(TP)(59.54%), alkaline hydrolysis nitrogen(AN)(544.65%),available phosphorus(AP)(53.28%), species diversity(86.3%), biomass(2906.52%), DBH(128.11%), and H(596.97%).The soil properties(pH, SOC, TN, AN, and TP) and vegetation features(biomass, DBH, and H) had a clear coevolutionary relationship over the course of restoration. The synergistic interaction between soil properties and vegetation features had the greatest effect on biomass(55.55%–72.37%), and the soil properties contributed secondarily(3.30%–31.44%). The main impact factors of biomass varied with the restoration periods.Conclusions: In the process of vegetation restoration, soil and vegetation promoted each other. Vegetation restoration was the cumulative result of changes in soil fertility and vegetation features.
基金funded by the National Natural Science Foundation of China(4130161041501094+3 种基金41330858)the Key Research Program of the Chinese Academy of Sciences(KZZD-EW-04)the Natural Science Basic Research Plan in Shaanxi Province of China(2014JQ5170)the open foundation of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau(A318009902-1510)
文摘In the last few decades, the Loess Plateau had experienced an extensive vegetation restoration to reduce soil erosion and to improve the degraded ecosystems. However, the dynamics of ecosystem carbon stocks with vegetation restoration in this region are poorly understood. This study examined the changes of carbon stocks in mineral soil (0-100 cm), plant biomass and the ecosystem (plant and soil) following vegetation restoration with different models and ages. Our results indicated that cultivated land returned to native vegetation (natural restoration) or artificial forest increased ecosystem carbon sequestration. Tree plantation sequestered more carbon than natural vegetation succession over decades scale due to the rapid increase in biomass carbon pool. Restoration ages had different effects on the dynamics of biomass and soil carbon stocks. Biomass carbon stocks increased with vegetation restoration age, while the dynamics of soil carbon stocks were affected by sampling depth. Ecosystem carbon stocks consistently increased after tree plantation regardless of the soil depth; but an initial decrease and then increase trend was observed in natural restoration chronosequences with the soil sampling depth of 0-100 cm. Moreover, there was a time lag of about 15-30 years between biomass production and soil carbon sequestration in 0-100 cm, which indicated a long-term effect of vegetation restoration on deeper soil carbon sequestration.
基金financially supported by the Fundamental Research Funds for the Central Universities (2015ZCQ-SB-03)the National Natural Science Foundation of China (51309007)the National Key Research and Development Project of China (2016YFC0501704)
文摘Soil moisture, a critical variable in the hydrologic cycle, is highly influenced by vegetation restoration type. However, the relationship between spatial variation of soil moisture, vegetation restoration type and slope length is controversial. Therefore, soil moisture across soil layers(0-400 cm depth) was measured before and after the rainy season in severe drought(2015) and normal hydrological year(2016) in three vegetation restoration areas(artificial forestland, natural forestland and grassland), on the hillslopes of the Caijiachuan Catchment in the Loess area, China. The results showed that artificial forestland had the lowest soil moisture and most severe water deficit in 100-200 cm soil layers. Water depletion was higher in artificial and natural forestlands than in natural grassland. Moreover, soil moisture in the shallow soil layers(0-100 cm) under the three vegetation restoration types did not significantly vary with slope length, but a significant increase with slope length was observed in deep soil layers(below 100 cm). In2015, a severe drought hydrological year, higher water depletion was observed at lower slope positions under three vegetation restoration types due to higher transpiration and evapotranspiration and unlikely recharge from upslope runoff. However, in 2016, a normal hydrological year, there was lower water depletion, even infiltration recharge at lower slope positions, indicating receiving a large amount of water from upslope. Vegetation restoration type, precipitation, slope length and soil depth during a rainy season, in descending order of influence, had significant effects on soil moisture. Generally, natural grassland is more beneficial for vegetation restoration than natural and artificial forestlands, and the results can provide useful information for understanding hydrological processes and improving vegetation restoration practices on the Loess Plateau
基金This work was supported by the National Key Research and Development Plan Projects of China(Grant No.2017YFC05054)the Graduate Student Science and Technology Innovation Project of the School of Geographical Science at Fujian Normal University(B2015112).
文摘We evaluated the effects of the number of years of restoration of vegetation on soil microbial community structure and biomass in degraded ecosystems.We investigated the microbial community structure by analyzing their phospholipid fatty acids then examined microbial biomass carbon and nitrogen by chloroform fumigation extraction of restoration soils over several years.The data were compared with those of highly degraded lands and native vegetation sites.The results show that the duration of vegetation on the sites substantially increased microbial biomass and shifted the microbial community structure even after only 4 years.However,microbial communities and biomass did not recover to the status of native vegetation even after 35 years of vegetation cover.A redundancy analysis and Pearson correlation analysis indicated that soil organic carbon,total nitrogen,available potassium,soil water content,silt content and soil hardness explained 98.4%of total variability in the microbial community composition.Soil organic carbon,total nitrogen,available potassium and soil water content were positively correlated with microbial community structure and biomass,whereas,soil hardness and silt content were negatively related to microbial community structure and biomass.This study provides new insights into microbial community structure and biomass that influence organic carbon,nitrogen,phosphorus and potassium accumulation,and clay content in soils at different stages of restoration.
基金Under the auspices of the National Key Research and Development Program of China(No.2017YFC0504701)National Natural Science Foundation of China(No.41971220,41701119,41471143)National Social Science Foundation of China(No.15ZDA021)
文摘A thorough understanding of the vegetation succession in relation to both climatic changes and anthropogenic activities is vital for the formulation of adaptation strategies that address potential ecosystem challenges.Various climatic factors such as temperature,precipitation,and solar radiation,as well as anthropogenic factors such as ecological engineering and population migration,will affect the conditions for vegetation.However,the relationships among various factors remain unclear and the response of vegetation to climate change and anthropogenic activities in the Loess Plateau of China has not been well established.This study investigated the spatio-temporal characteristics and relationships between vegetation coverage and climatic factors in the Loess Plateau for the period of 1985–2015.Further analysis separated the anthropogenic and climatic factors on vegetation succession based on residual analysis.The results showed that the normalized difference vegetation index(NDVI)followed a significant upward trend with annual change rates of 0.15%during 1985–2015.The trend of human-induced NDVI increase was consistent with the spatial distribution of increasing forest areas in the eastern part of the Loess Plateau.Eco-restoration projects were the main driving factors that promoted vegetation coverage on the Loess Plateau.Furthermore,these results demonstrated that migrants to cities in the Loess Plateau could relieve ecological pressures and promote vegetation restoration.Therefore,the government should strive to increase population mobility and restore vegetation to sustain this particularly fragile ecological environment.