Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have ga...Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have gained lots of attention as a feasible testing platform, nonetheless up to the authors’ knowledge there has been no research regarding the use of scaled tires and their effect on the overall vehicle performance characteristics. This paper presents a novel scaled electric combat vehicle tire model and validation technique. The pro-line lockdown tire size 3.00 × 7.35 is modeled using the Finite Element Analysis (FEA) technique and several materials including layered membrane, beam elements, and Mooney-Rivlin for rubber. The tire-rim assembly is then described, and the rigid body analysis is presented. The tire is then validated using an in-house custom-made static tire testing machine. The tire test rig is made specifically to test the pro-line tire model and is designed and manufactured in the laboratory. The tire is validated using vertical stiffness and footprint tests in the static domain at different operating conditions including several vertical loads. Then the tire is used to perform rolling resistance and steering analysis including the rolling resistance coefficient and the cornering stiffness. The analysis is performed at different operating conditions including longitudinal speeds of 5, 10, and 15 km/h. This tire model will be further used to determine the tractive and braking performance of the tire. Furthermore, the tire test rig will also be modified to perform cornering stiffness tests.展开更多
A program for calculating the aerodynamic properties of hypersonic vehicles based on the surface element method was developed using the general-purpose programming language C++. The calculated values of lift coefficie...A program for calculating the aerodynamic properties of hypersonic vehicles based on the surface element method was developed using the general-purpose programming language C++. The calculated values of lift coefficients, drag coefficients, and surface pressure coefficients are discussed with the results of wind tunnel experiments using the HL-20 lift body and the NASA hypersonic aircraft STS Columbia OV-102 as research subjects. Finally, the results of the experimental and wind tunnel studies of the aerodynamic characteristics of the HL-20 lift body at an altitude of 65 km and Mach numbers of 6 and 10 Ma are discussed. The maximum error in the aerodynamic characteristics at 6 Ma does not exceed 3%, consistent with the results. The maximum error at 10 Ma occurs in the 11° - 14° angle of attack and does not exceed 10%, which is still within the error tolerance. The STS results for NASA’s hypersonic aircraft were also tested using this procedure. Experimental aerodynamic data for the Colombian OV-102 aircraft. The results show that the program takes only 10 minutes to calculate the results, with no more than 2% error from the wind tunnel experimental results.展开更多
In this paper, a successful flight with an unmanned aerial vehicle (UAV) surrounded Typhoon Sinlaku on 15 Sept., 2008 and the preliminary analysis of all the collected data during the observation period has been prese...In this paper, a successful flight with an unmanned aerial vehicle (UAV) surrounded Typhoon Sinlaku on 15 Sept., 2008 and the preliminary analysis of all the collected data during the observation period has been presented. It is the first time to adopt surrounding method to observe typhoon in mainland of China. During the 3 h field campaign, the flight altitude is about 500 m to observe the essential meteorological elements in boundary layer of typhoon. The average temperature is 22.57°C and ranged from 21.50°C to 25.80°C, while about the relative humidity, the maximum is 100%, the minimum is 80.60% and the average is 97.98%. As for the wind, the average wind speed is 19.68 m/s and the maximum is 30.03 m/s. The typhoon center is a warm structure, the closer to the center, the higher the temperature is and the lower the wind speed is. In conclusion, the mini-UAV has the capability to observe the boundary layer of typhoon.展开更多
The strength of the connection structure has always been a key issue in the structural design of a launch vehicle.In this paper,the finite element analysis method is used for the strength of typical connection structu...The strength of the connection structure has always been a key issue in the structural design of a launch vehicle.In this paper,the finite element analysis method is used for the strength of typical connection structures of a new launch vehicle.The research scope includes the inter-stage connection structure and the bundle connection structure.Aiming at establishing the strength of these two connection structures under flight conditions,we built a refined finite element model,simulated the bolt tensile test and obtained a calculation criteria,and carried out finite element analysis of the connection structures under flight conditions.As a result,we not only established the analysis and evaluation method of the connection structures based on the refined finite element modeling analysis,but also provided a fast numerical simulation design method for the development of the launch vehicle’s connection structures,which greatly improved the design efficiency and reduced the design risk.展开更多
To prevent early bridge failures, effective Structural Health Monitoring (SHM) is vital. Vibration-based damage assessment is a powerful tool in this regard, as it relies on changes in a structure’s dynamic character...To prevent early bridge failures, effective Structural Health Monitoring (SHM) is vital. Vibration-based damage assessment is a powerful tool in this regard, as it relies on changes in a structure’s dynamic characteristics as it degrades. By measuring the vibration response of a bridge due to passing vehicles, this approach can identify potential structural damage. This dissertation introduces a novel technique grounded in Vehicle-Bridge Interaction (VBI) to evaluate bridge health. It aims to detect damage by analyzing the response of passing vehicles, taking into account VBI. The theoretical foundation of this method begins with representing the bridge’s superstructure using a Finite Element Model and employing a half-car dynamic model to simulate the vehicle with suspension. Two sets of motion equations, one for the bridge and one for the vehicle are generated using the Finite Element Method, mode superposition, and D’Alembert’s principle. The combined dynamics are solved using the Newmark-beta method, accounting for road surface roughness. A new approach for damage identification based on the response of passing vehicles is proposed. The response is theoretically composed of vehicle frequency, bridge natural frequency, and a pseudo-frequency component related to vehicle speed. The Empirical Mode Decomposition (EMD) method is applied to decompose the signal into its constituent parts, and damage detection relies on the Intrinsic Mode Functions (IMFs) corresponding to the vehicle speed component. This technique effectively identifies various damage scenarios considered in the study.展开更多
In this study,vehicle exhaust particles were collected three locations (the middle,entrance and outside) of the Dapu Road tunnel in downtown Shanghai,and the particle samples were characterized using SEM,XAFS,ICP-MS a...In this study,vehicle exhaust particles were collected three locations (the middle,entrance and outside) of the Dapu Road tunnel in downtown Shanghai,and the particle samples were characterized using SEM,XAFS,ICP-MS and M?ssbauer spectrometry,and the oxidative damage was assessed by plasmid DNA.Most iron-containing particles are found from vehicle exhaust,and iron oxide is the major species in all samples.Its concentration in the particles inside the tunnel is higher than that the outside particles.The iron particles inside the tunnel have higher proportion of water-soluble fraction in hydrous iron sulfate form or smaller size.ZnCl2 is the main soluble fraction in zinc-containing particles,while higher percentage of insoluble fraction existed in the particles outside of tunnel.Major species of lead-containing particles are PbSO4,Pb3(PO4)2 and PbCO3.In addition,the soluble fraction of other transition metallic elements as Ti and V is higher in the particles inside the tunnel than that outside the tunnel.The plasmid DNA assay results indicate that the particles from vehicle exhaust have a stronger oxidative damage and inflammation than that from outside of the tunnel.展开更多
In order to study the critical load position that causes cavities beneath the continuously reinforced concrete pavement( CRCP) slab under vehicle loading, the elliptical load is translated into the square load based...In order to study the critical load position that causes cavities beneath the continuously reinforced concrete pavement( CRCP) slab under vehicle loading, the elliptical load is translated into the square load based on the equivalence principle.The CRCP slab is analyzed to determine the cavity position beneath the slab under vehicle loading. The influences of cavity size on the CRCP slab's stress and vertical displacement are investigated. The study results showthat the formation of the cavity is unavoidable under traffic loading, and the cavity is located at the edge of the longitudinal crack and the slab corner.The cavity size exerts an obvious influence on the largest horizontal tensile stress and vertical displacement. The slab corner is the critical load position of the CRCP slab. The results can be used to assist the design of CRCP in avoiding cavities beneath slabs subject to vehicle loading.展开更多
In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is describe...In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is described by a prony series which is calculated through nonlinear fitting to the creep test data obtained in the laboratory. Based on the viscoelastic theory, the time-temperature equivalence principle, fracture mechanics and the dynamic finite element method, both the Jintegral and the mix-mode stress intensity factor are utilized as fracture evaluation parameters, and a half-sine dynamic loading is used to simulate the vehicle loading. Finally, the mechanical response of the pavement reflective cracking is analyzed under different vehicle speeds, different environmental conditions and various damping factors. The results indicate that increasing either the vehicle speed or the structure damping factor decreases the maximum values of fracture parameters, while the structure temperature has little effect on the fracture parameters. Due to the fact that the vehicle speed can be enhanced by improving the road traffic conditions, and the pavement damping factor can become greater by modifying the components of materials, the development of reflective cracking can be delayed and the asphalt pavement service life can be effectively extended through both of these ways.展开更多
Abstract: The major methods to investigate the airbags cushion system are experimental method, thermodynamic method and finite element method (FEM). Airbags cushion systems are very complicated and very difficult t...Abstract: The major methods to investigate the airbags cushion system are experimental method, thermodynamic method and finite element method (FEM). Airbags cushion systems are very complicated and very difficult to be investigated thoroughly by such methods For experimental method, it is nearly impossible to completely analyze and optimize the cushion characteristics of airbags of airborne vehicle because of charge issue, safety concern and time constraint. Thermodynamic method fails to take the non-linear effects of large airbag deformation and varied contact conditions into consideration. For finite element method, the FE model is usually complicated and the calculation takes tens of hours of CPU time. As a result, the optimization of the design based on a nonlinear model is very difficult by traditional iterative approach method. In this paper, a model based on FEM and control volume method is proposed to simulate landing cushion process of airborne vehicle with airbags cushion system in order to analyze and optimize the parameters in airbags cushion system. At first, the performance of airbags cushion system model is verified experimentally. In airdrop test, accelerometers are fixed in 4 test points distributed over engine mount, top, bottom and side armor plate of hull to obtain acceleration curves with time. The simulation results are obtained under the same conditions of the airdrop test and the simulation results agree very well with the experimental results, which indicate the established model is valid for further optimization. To optimize the parameters of airbags, equivalent response model based on Latin Hypercube DOE and radial basis function is employed instead of the complex finite element model. Then the optimal results based on equivalent response model are obtained using simulated annealing algorithm. After optimization, the maximal acceleration of airborne vehicle landing reduces 19.83%, while the energy absorption by airbags increases 7.85%. The performance of the airbags cushion system thus is largely improved through optimization, which indicates the proposed method has the capability of solving the parameter optimization problem of airbags cushion system for airborne vehicle.展开更多
A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajec...A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajectory generator for vehicle was proposed for more actual simulation.Firstly,a vehicle kinematics model was built based on conversion of attitude vector in different coordinate systems.Then,the principle of common trajectory generators was analyzed.Besides,combining the vehicle kinematics model with the principle of dead reckoning,a new vehicle trajectory generator was presented,which can provide process parameters of carrier anytime and achieve simulation of typical actions of running vehicle.Moreover,IMU(inertial measurement unit) elements were simulated,including accelerometer and gyroscope.After setting up the simulation conditions,the integrated navigation simulation system was verified by final performance test.The result proves the validity and flexibility of this design.展开更多
Levitation chassis, as an extremely important component of maglev vehicles, provides functions of transmitting levitation force and steering force, and directly affects the safety performance of the vehicle. Based on ...Levitation chassis, as an extremely important component of maglev vehicles, provides functions of transmitting levitation force and steering force, and directly affects the safety performance of the vehicle. Based on the vertical dynamics model of the levitation chassis, kinetic equations of the model are established, and a simulation program is designed to analyze the structural decoupling function of the chassis, especially under the influence of elastic constraints between the left and right modules, which are exclusively owned by maglev vehicles. A finite element model of the levitation chassis based on left-right decoupling is constructed. Analysis results of the model show that the mechanical properties of the chassis tailored for the vehicle meet the design requirements, and the stiffness and strength is adequate to bear the weight of the whole vehicle.展开更多
In order to improve the heat dissipation capability of motor controller for new energy vehicles,the water cooled radiator with multiple channels is optimized in this paper.The heat conduction between the heat source I...In order to improve the heat dissipation capability of motor controller for new energy vehicles,the water cooled radiator with multiple channels is optimized in this paper.The heat conduction between the heat source IGBT and the radiator,the convective heat transfer between the radiator and the coolant,the mechanical strength and the manufacturing cost are comprehensively considered during the optimization process.The power loss and thermal resistance of the IGBT unit are calculated at first,and finite element model of the radiator is established.On this basis,multi-physics coupling analysis of the water cooled radiator is carried out.Secondly,the sensitivity analysis is applied to verify the influence of structural parameters on the heat dissipation performance of the radiator system.The influence of coolant inlet velocity v,number of cooling ribs n,height of radiator ribs H on the maximum temperature rise T,the temperature difference ΔT between phase U and W,and the coolant pressure lossΔP are analyzed in depth,and the optimal range of the structural parameters for heat dissipation is obtained.Finally,an experimental platform was set up to verify the performance of the proposed structure of water cooled radiator for motor controller of new energy vehicle.The results show that the heat dissipation capability of the proposed radiator is improved compared with the initial design.展开更多
Vehicle detection has been the critical part of the traffic surveillance system for many years. However, vehicle detection method is still challenging. In this paper, differential morphology closing profile is used to...Vehicle detection has been the critical part of the traffic surveillance system for many years. However, vehicle detection method is still challenging. In this paper, differential morphology closing profile is used to extract the vehicle automatically from the traffic image. Along with closing profile, some addition operation has been applied as a part of the algorithm to get the high detection and quality rate. Result demonstrated that the novel method has an excellent detection and quality percentage. We also have compared our automated detection method with other traditional image processing based methods and the results indicate that our proposed method provides better results than traditional image processing based methods.展开更多
A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing...A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing the updated Lagrangian formulation.The numerical results indicate that there exists a critical thickness for the supercavitating plain shell for the considered velocity of the vehicle.The structure fails more easily because of instability with the thickness less than the critical value,while the structure maintains dynamic stability with the thickness greater than the critical value.As the velocity of the vehicle increases,the critical thickness for the plain shell increases accordingly.For the considered structural configuration,the critical thicknesses of plain shells are 5 and 7 mm for the velocities of 300 and 400 m/s,respectively.The structural stability is enhanced by using the stiffened configuration.With the shell configuration of nine ring stiffeners,the maximal displacement and von Mises stress of the supercavitating structure decrease by 25% and 17% for the velocity of 300 m/s,respectively.Compared with ring stiffeners,longitudinal stiffeners are more significant to improve structural dynamic performance and decrease the critical value of thickness of the shell for the supercavitating vehicle.展开更多
In the design of the motor used for electric vehicles(EVS),vibration and noise problems are often ignored,which reduce the reliability and service life of the motor.In this paper,an interior permanent magnet synchrono...In the design of the motor used for electric vehicles(EVS),vibration and noise problems are often ignored,which reduce the reliability and service life of the motor.In this paper,an interior permanent magnet synchronous motor(IPMSM)with high power density is taken as an example,and its electromagnetic vibration and noise problem is investigated and optimized.Firstly,the factors that generate the electromagnetic force harmonic of IPMSM are analyzed by theoretical derivation.Furthermore,the mode and electromagnetic harmonic distribution of the motor are calculated and analyzed by establishing the electromagnetic-structure-sound coupling simulation model.Then,by combining finite element method(FEM)with modern optimization algorithm,an electromagnetic vibration and noise performance optimization method is proposed in the electromagnetic design stage of the motor.Finally,an IPMSM is optimized by this method for electromagnetic vibration and noise performance.The results of comparison between before and after optimization prove the feasibility of the method.展开更多
It is important to verify the safety of electric vehicle(EV)wireless power transmission for child passengers by studying the electromagnetic exposure difference between the child passengers and the adult passengers.Th...It is important to verify the safety of electric vehicle(EV)wireless power transmission for child passengers by studying the electromagnetic exposure difference between the child passengers and the adult passengers.The dielectric parameters of the child passengers’body were calculated under the operating frequency of 85 kHz.Using the finite element simulation software COMSOL Multiphysics,a model was established for the child passengers and adult passengers when the EVs charged by the wireless charging coil.This paper analyzed the distribution of magnetic induction intensity and induced electric field intensity generated on the body and head when the child passengers and adult passengers sat in four different positions.Additionally,the difference between the brain electromagnetic exposure values of children and adults was analyzed and compared with the limits set.The results showed that the electromagnetic exposure was the largest when the passenger sat in the co-driver position.The electromagnetic exposure level of child was slightly higher than that of adult at the same position,and the magnetic induction intensity and induced electric field intensity of both were much smaller than the public electromagnetic exposure recommendation values.展开更多
This study presents an investigation on the fatigue analysis of four types of details on orthotropic steel decks(OSDs)for a cable-stayed super-wide steel box girder bridge based on finite-element analysis(FEA)with veh...This study presents an investigation on the fatigue analysis of four types of details on orthotropic steel decks(OSDs)for a cable-stayed super-wide steel box girder bridge based on finite-element analysis(FEA)with vehicle transverse distribution model(VTDM).A high-fidelity 3D FE model verified by the static load test is established to satisfy the fatigue analysis accuracy.The stress behavior of super-wide steel box girders under the vehicle load at different lane locations is investigated.Then,considering the effect of VTDM,the fatigue life analysis of four typical details is performed using the Miner cumulative damage rule.The results show that the vehicle transverse location has a great influence on the stress behavior of details with sharp influence surface,and the stress ranges in the outermost lane are larger than those in other lanes,indicating that the details of OSD in the outermost lane are prone to fatigue.The fatigue life analysis indicates that the diaphragm cutout is more prone to fatigue than other details,which should be carefully treated in bridge maintenance.展开更多
Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensit...Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensitivity analysis elucidated the relationship between the maximum stress and the thickness of a particular beam,e. g.,top,middle,and bottom beam. Displacement was analyzed by the key part that influenced the maximum stress. Finally,the new plan using BS960 super-high-strength beam steel and the preferred beam thickness was compared with the original plan. New combinations of beam thickness were introduced on the basis of different purposes; the maximum responding light w eight ratio was 21%.展开更多
In the 21st century, people have come to the era of ocean science and ocean economy. With the development of ocean science and technology and the thorough research on the ocean, underwater mating technique has been wi...In the 21st century, people have come to the era of ocean science and ocean economy. With the development of ocean science and technology and the thorough research on the ocean, underwater mating technique has been widely used in such fields as sunk ship salvage, deep ocean workstation, submarine lifesaving aid and military affairs. In this paper, researches are made home and abroad on mating technology. Two-joint mating system of underwater vehicle is designed including plane system, three-dimensional assembly system and control system in order to increase the capacity of adapting platform obliquity and adopting rotational skirt scheme. It is clear that the system fits the working space of underwater vehicle passageway and there is no interference phenomenon in assembly design. The finite element model of the system shell and the pressurization of the joint are established. The results of the finite element computing and the pressing test are accordant, and thus it can testify that the shell material meet the need of intension and joint pressurization is reliable. Modeling of the control system is accomplished, and simulation and analysis are made, which can provide directions for the controller design of mating system of underwater vehicles.展开更多
In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the ac...In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the actual measured track irregularities and line conditions were considered. The wear depth of the wheel profile was calculated by the well-known Archard wear law. Through this model, the influence of the wheel profile, primary suspension stiffness, track gage, and rail cant on the wear of wheel profile were studied through multiple iterafive calculations. Numerical simulation results show that the type XP55 wheel profile has the smallest cumulative wear depth, and the type LM wheel profile has the largest wear depth. To reduce the wear of the wheel profile, the equivalent conicity of the wheel should not be too large or too small. On the other hand, a small primary vertical stiffness, a track gage around 1,435-1,438 mm, and a rail cant around 1:35-1:40 are beneficial for dynamic performance improvement and wheel wear alleviation.展开更多
文摘Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have gained lots of attention as a feasible testing platform, nonetheless up to the authors’ knowledge there has been no research regarding the use of scaled tires and their effect on the overall vehicle performance characteristics. This paper presents a novel scaled electric combat vehicle tire model and validation technique. The pro-line lockdown tire size 3.00 × 7.35 is modeled using the Finite Element Analysis (FEA) technique and several materials including layered membrane, beam elements, and Mooney-Rivlin for rubber. The tire-rim assembly is then described, and the rigid body analysis is presented. The tire is then validated using an in-house custom-made static tire testing machine. The tire test rig is made specifically to test the pro-line tire model and is designed and manufactured in the laboratory. The tire is validated using vertical stiffness and footprint tests in the static domain at different operating conditions including several vertical loads. Then the tire is used to perform rolling resistance and steering analysis including the rolling resistance coefficient and the cornering stiffness. The analysis is performed at different operating conditions including longitudinal speeds of 5, 10, and 15 km/h. This tire model will be further used to determine the tractive and braking performance of the tire. Furthermore, the tire test rig will also be modified to perform cornering stiffness tests.
文摘A program for calculating the aerodynamic properties of hypersonic vehicles based on the surface element method was developed using the general-purpose programming language C++. The calculated values of lift coefficients, drag coefficients, and surface pressure coefficients are discussed with the results of wind tunnel experiments using the HL-20 lift body and the NASA hypersonic aircraft STS Columbia OV-102 as research subjects. Finally, the results of the experimental and wind tunnel studies of the aerodynamic characteristics of the HL-20 lift body at an altitude of 65 km and Mach numbers of 6 and 10 Ma are discussed. The maximum error in the aerodynamic characteristics at 6 Ma does not exceed 3%, consistent with the results. The maximum error at 10 Ma occurs in the 11° - 14° angle of attack and does not exceed 10%, which is still within the error tolerance. The STS results for NASA’s hypersonic aircraft were also tested using this procedure. Experimental aerodynamic data for the Colombian OV-102 aircraft. The results show that the program takes only 10 minutes to calculate the results, with no more than 2% error from the wind tunnel experimental results.
文摘In this paper, a successful flight with an unmanned aerial vehicle (UAV) surrounded Typhoon Sinlaku on 15 Sept., 2008 and the preliminary analysis of all the collected data during the observation period has been presented. It is the first time to adopt surrounding method to observe typhoon in mainland of China. During the 3 h field campaign, the flight altitude is about 500 m to observe the essential meteorological elements in boundary layer of typhoon. The average temperature is 22.57°C and ranged from 21.50°C to 25.80°C, while about the relative humidity, the maximum is 100%, the minimum is 80.60% and the average is 97.98%. As for the wind, the average wind speed is 19.68 m/s and the maximum is 30.03 m/s. The typhoon center is a warm structure, the closer to the center, the higher the temperature is and the lower the wind speed is. In conclusion, the mini-UAV has the capability to observe the boundary layer of typhoon.
文摘The strength of the connection structure has always been a key issue in the structural design of a launch vehicle.In this paper,the finite element analysis method is used for the strength of typical connection structures of a new launch vehicle.The research scope includes the inter-stage connection structure and the bundle connection structure.Aiming at establishing the strength of these two connection structures under flight conditions,we built a refined finite element model,simulated the bolt tensile test and obtained a calculation criteria,and carried out finite element analysis of the connection structures under flight conditions.As a result,we not only established the analysis and evaluation method of the connection structures based on the refined finite element modeling analysis,but also provided a fast numerical simulation design method for the development of the launch vehicle’s connection structures,which greatly improved the design efficiency and reduced the design risk.
文摘To prevent early bridge failures, effective Structural Health Monitoring (SHM) is vital. Vibration-based damage assessment is a powerful tool in this regard, as it relies on changes in a structure’s dynamic characteristics as it degrades. By measuring the vibration response of a bridge due to passing vehicles, this approach can identify potential structural damage. This dissertation introduces a novel technique grounded in Vehicle-Bridge Interaction (VBI) to evaluate bridge health. It aims to detect damage by analyzing the response of passing vehicles, taking into account VBI. The theoretical foundation of this method begins with representing the bridge’s superstructure using a Finite Element Model and employing a half-car dynamic model to simulate the vehicle with suspension. Two sets of motion equations, one for the bridge and one for the vehicle are generated using the Finite Element Method, mode superposition, and D’Alembert’s principle. The combined dynamics are solved using the Newmark-beta method, accounting for road surface roughness. A new approach for damage identification based on the response of passing vehicles is proposed. The response is theoretically composed of vehicle frequency, bridge natural frequency, and a pseudo-frequency component related to vehicle speed. The Empirical Mode Decomposition (EMD) method is applied to decompose the signal into its constituent parts, and damage detection relies on the Intrinsic Mode Functions (IMFs) corresponding to the vehicle speed component. This technique effectively identifies various damage scenarios considered in the study.
基金supported by Knowledge Innovation Project of Chinese Academy of Sciences (KJCX3.SYW.N3,key program)the National Natural Science Foundation of China (10490182,key program and 10675159)
文摘In this study,vehicle exhaust particles were collected three locations (the middle,entrance and outside) of the Dapu Road tunnel in downtown Shanghai,and the particle samples were characterized using SEM,XAFS,ICP-MS and M?ssbauer spectrometry,and the oxidative damage was assessed by plasmid DNA.Most iron-containing particles are found from vehicle exhaust,and iron oxide is the major species in all samples.Its concentration in the particles inside the tunnel is higher than that the outside particles.The iron particles inside the tunnel have higher proportion of water-soluble fraction in hydrous iron sulfate form or smaller size.ZnCl2 is the main soluble fraction in zinc-containing particles,while higher percentage of insoluble fraction existed in the particles outside of tunnel.Major species of lead-containing particles are PbSO4,Pb3(PO4)2 and PbCO3.In addition,the soluble fraction of other transition metallic elements as Ti and V is higher in the particles inside the tunnel than that outside the tunnel.The plasmid DNA assay results indicate that the particles from vehicle exhaust have a stronger oxidative damage and inflammation than that from outside of the tunnel.
基金The Science Foundation of Ministry of Transport of the People's Republic of China(No.200731822301-7)
文摘In order to study the critical load position that causes cavities beneath the continuously reinforced concrete pavement( CRCP) slab under vehicle loading, the elliptical load is translated into the square load based on the equivalence principle.The CRCP slab is analyzed to determine the cavity position beneath the slab under vehicle loading. The influences of cavity size on the CRCP slab's stress and vertical displacement are investigated. The study results showthat the formation of the cavity is unavoidable under traffic loading, and the cavity is located at the edge of the longitudinal crack and the slab corner.The cavity size exerts an obvious influence on the largest horizontal tensile stress and vertical displacement. The slab corner is the critical load position of the CRCP slab. The results can be used to assist the design of CRCP in avoiding cavities beneath slabs subject to vehicle loading.
文摘In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is described by a prony series which is calculated through nonlinear fitting to the creep test data obtained in the laboratory. Based on the viscoelastic theory, the time-temperature equivalence principle, fracture mechanics and the dynamic finite element method, both the Jintegral and the mix-mode stress intensity factor are utilized as fracture evaluation parameters, and a half-sine dynamic loading is used to simulate the vehicle loading. Finally, the mechanical response of the pavement reflective cracking is analyzed under different vehicle speeds, different environmental conditions and various damping factors. The results indicate that increasing either the vehicle speed or the structure damping factor decreases the maximum values of fracture parameters, while the structure temperature has little effect on the fracture parameters. Due to the fact that the vehicle speed can be enhanced by improving the road traffic conditions, and the pavement damping factor can become greater by modifying the components of materials, the development of reflective cracking can be delayed and the asphalt pavement service life can be effectively extended through both of these ways.
文摘Abstract: The major methods to investigate the airbags cushion system are experimental method, thermodynamic method and finite element method (FEM). Airbags cushion systems are very complicated and very difficult to be investigated thoroughly by such methods For experimental method, it is nearly impossible to completely analyze and optimize the cushion characteristics of airbags of airborne vehicle because of charge issue, safety concern and time constraint. Thermodynamic method fails to take the non-linear effects of large airbag deformation and varied contact conditions into consideration. For finite element method, the FE model is usually complicated and the calculation takes tens of hours of CPU time. As a result, the optimization of the design based on a nonlinear model is very difficult by traditional iterative approach method. In this paper, a model based on FEM and control volume method is proposed to simulate landing cushion process of airborne vehicle with airbags cushion system in order to analyze and optimize the parameters in airbags cushion system. At first, the performance of airbags cushion system model is verified experimentally. In airdrop test, accelerometers are fixed in 4 test points distributed over engine mount, top, bottom and side armor plate of hull to obtain acceleration curves with time. The simulation results are obtained under the same conditions of the airdrop test and the simulation results agree very well with the experimental results, which indicate the established model is valid for further optimization. To optimize the parameters of airbags, equivalent response model based on Latin Hypercube DOE and radial basis function is employed instead of the complex finite element model. Then the optimal results based on equivalent response model are obtained using simulated annealing algorithm. After optimization, the maximal acceleration of airborne vehicle landing reduces 19.83%, while the energy absorption by airbags increases 7.85%. The performance of the airbags cushion system thus is largely improved through optimization, which indicates the proposed method has the capability of solving the parameter optimization problem of airbags cushion system for airborne vehicle.
基金Projects(90820302, 60805027, 61175064) supported by the National Natural Science Foundation of ChinaProject(2011ssxt231) supported by the Master Degree Thesis Innovation Project Foundation of Central South University, China+1 种基金Project(200805330005) supported by the Research Fund for the Doctoral Program of Higher Education, ChinaProject(2011FJ4043) supported by the Academician Foundation of Hunan Province, China
文摘A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajectory generator for vehicle was proposed for more actual simulation.Firstly,a vehicle kinematics model was built based on conversion of attitude vector in different coordinate systems.Then,the principle of common trajectory generators was analyzed.Besides,combining the vehicle kinematics model with the principle of dead reckoning,a new vehicle trajectory generator was presented,which can provide process parameters of carrier anytime and achieve simulation of typical actions of running vehicle.Moreover,IMU(inertial measurement unit) elements were simulated,including accelerometer and gyroscope.After setting up the simulation conditions,the integrated navigation simulation system was verified by final performance test.The result proves the validity and flexibility of this design.
基金supported by the National Natural Science Foundation of China (No. 51175442)the Fundamental Research Funds for the Central Universities (SWJTU12CX040)
文摘Levitation chassis, as an extremely important component of maglev vehicles, provides functions of transmitting levitation force and steering force, and directly affects the safety performance of the vehicle. Based on the vertical dynamics model of the levitation chassis, kinetic equations of the model are established, and a simulation program is designed to analyze the structural decoupling function of the chassis, especially under the influence of elastic constraints between the left and right modules, which are exclusively owned by maglev vehicles. A finite element model of the levitation chassis based on left-right decoupling is constructed. Analysis results of the model show that the mechanical properties of the chassis tailored for the vehicle meet the design requirements, and the stiffness and strength is adequate to bear the weight of the whole vehicle.
基金supported in part by the National Natural Science Foundation of China(61503132)。
文摘In order to improve the heat dissipation capability of motor controller for new energy vehicles,the water cooled radiator with multiple channels is optimized in this paper.The heat conduction between the heat source IGBT and the radiator,the convective heat transfer between the radiator and the coolant,the mechanical strength and the manufacturing cost are comprehensively considered during the optimization process.The power loss and thermal resistance of the IGBT unit are calculated at first,and finite element model of the radiator is established.On this basis,multi-physics coupling analysis of the water cooled radiator is carried out.Secondly,the sensitivity analysis is applied to verify the influence of structural parameters on the heat dissipation performance of the radiator system.The influence of coolant inlet velocity v,number of cooling ribs n,height of radiator ribs H on the maximum temperature rise T,the temperature difference ΔT between phase U and W,and the coolant pressure lossΔP are analyzed in depth,and the optimal range of the structural parameters for heat dissipation is obtained.Finally,an experimental platform was set up to verify the performance of the proposed structure of water cooled radiator for motor controller of new energy vehicle.The results show that the heat dissipation capability of the proposed radiator is improved compared with the initial design.
文摘Vehicle detection has been the critical part of the traffic surveillance system for many years. However, vehicle detection method is still challenging. In this paper, differential morphology closing profile is used to extract the vehicle automatically from the traffic image. Along with closing profile, some addition operation has been applied as a part of the algorithm to get the high detection and quality rate. Result demonstrated that the novel method has an excellent detection and quality percentage. We also have compared our automated detection method with other traditional image processing based methods and the results indicate that our proposed method provides better results than traditional image processing based methods.
文摘A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing the updated Lagrangian formulation.The numerical results indicate that there exists a critical thickness for the supercavitating plain shell for the considered velocity of the vehicle.The structure fails more easily because of instability with the thickness less than the critical value,while the structure maintains dynamic stability with the thickness greater than the critical value.As the velocity of the vehicle increases,the critical thickness for the plain shell increases accordingly.For the considered structural configuration,the critical thicknesses of plain shells are 5 and 7 mm for the velocities of 300 and 400 m/s,respectively.The structural stability is enhanced by using the stiffened configuration.With the shell configuration of nine ring stiffeners,the maximal displacement and von Mises stress of the supercavitating structure decrease by 25% and 17% for the velocity of 300 m/s,respectively.Compared with ring stiffeners,longitudinal stiffeners are more significant to improve structural dynamic performance and decrease the critical value of thickness of the shell for the supercavitating vehicle.
基金This work was supported by the Fundamental Research Funds for the Central Universities(No.2019YJS181).
文摘In the design of the motor used for electric vehicles(EVS),vibration and noise problems are often ignored,which reduce the reliability and service life of the motor.In this paper,an interior permanent magnet synchronous motor(IPMSM)with high power density is taken as an example,and its electromagnetic vibration and noise problem is investigated and optimized.Firstly,the factors that generate the electromagnetic force harmonic of IPMSM are analyzed by theoretical derivation.Furthermore,the mode and electromagnetic harmonic distribution of the motor are calculated and analyzed by establishing the electromagnetic-structure-sound coupling simulation model.Then,by combining finite element method(FEM)with modern optimization algorithm,an electromagnetic vibration and noise performance optimization method is proposed in the electromagnetic design stage of the motor.Finally,an IPMSM is optimized by this method for electromagnetic vibration and noise performance.The results of comparison between before and after optimization prove the feasibility of the method.
基金Department of Edication of Gansu Province(No.2018D-08)。
文摘It is important to verify the safety of electric vehicle(EV)wireless power transmission for child passengers by studying the electromagnetic exposure difference between the child passengers and the adult passengers.The dielectric parameters of the child passengers’body were calculated under the operating frequency of 85 kHz.Using the finite element simulation software COMSOL Multiphysics,a model was established for the child passengers and adult passengers when the EVs charged by the wireless charging coil.This paper analyzed the distribution of magnetic induction intensity and induced electric field intensity generated on the body and head when the child passengers and adult passengers sat in four different positions.Additionally,the difference between the brain electromagnetic exposure values of children and adults was analyzed and compared with the limits set.The results showed that the electromagnetic exposure was the largest when the passenger sat in the co-driver position.The electromagnetic exposure level of child was slightly higher than that of adult at the same position,and the magnetic induction intensity and induced electric field intensity of both were much smaller than the public electromagnetic exposure recommendation values.
基金supported by the National Natural Science Foundation of China(Grant Nos.51778135,52178119)the Distinguished Young Scientists of Jiangsu Province(Grant No.BK20190013)the National Key R&D Program Foundation of China(Grant No.2017YFC0806001).
文摘This study presents an investigation on the fatigue analysis of four types of details on orthotropic steel decks(OSDs)for a cable-stayed super-wide steel box girder bridge based on finite-element analysis(FEA)with vehicle transverse distribution model(VTDM).A high-fidelity 3D FE model verified by the static load test is established to satisfy the fatigue analysis accuracy.The stress behavior of super-wide steel box girders under the vehicle load at different lane locations is investigated.Then,considering the effect of VTDM,the fatigue life analysis of four typical details is performed using the Miner cumulative damage rule.The results show that the vehicle transverse location has a great influence on the stress behavior of details with sharp influence surface,and the stress ranges in the outermost lane are larger than those in other lanes,indicating that the details of OSD in the outermost lane are prone to fatigue.The fatigue life analysis indicates that the diaphragm cutout is more prone to fatigue than other details,which should be carefully treated in bridge maintenance.
文摘Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensitivity analysis elucidated the relationship between the maximum stress and the thickness of a particular beam,e. g.,top,middle,and bottom beam. Displacement was analyzed by the key part that influenced the maximum stress. Finally,the new plan using BS960 super-high-strength beam steel and the preferred beam thickness was compared with the original plan. New combinations of beam thickness were introduced on the basis of different purposes; the maximum responding light w eight ratio was 21%.
基金supported by the Heilongjiang Provincial Natural Science Foundation (Grant No. E091002)the Postdoctoral Science-Research Developmental Foundation of Heilongjiang province (Grant No. 323630299)
文摘In the 21st century, people have come to the era of ocean science and ocean economy. With the development of ocean science and technology and the thorough research on the ocean, underwater mating technique has been widely used in such fields as sunk ship salvage, deep ocean workstation, submarine lifesaving aid and military affairs. In this paper, researches are made home and abroad on mating technology. Two-joint mating system of underwater vehicle is designed including plane system, three-dimensional assembly system and control system in order to increase the capacity of adapting platform obliquity and adopting rotational skirt scheme. It is clear that the system fits the working space of underwater vehicle passageway and there is no interference phenomenon in assembly design. The finite element model of the system shell and the pressurization of the joint are established. The results of the finite element computing and the pressing test are accordant, and thus it can testify that the shell material meet the need of intension and joint pressurization is reliable. Modeling of the control system is accomplished, and simulation and analysis are made, which can provide directions for the controller design of mating system of underwater vehicles.
基金the support of the National Natural Science Foundation of China (No. 51005189)the National Key Technology R&D Program of China (2009BAG12A01)
文摘In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the actual measured track irregularities and line conditions were considered. The wear depth of the wheel profile was calculated by the well-known Archard wear law. Through this model, the influence of the wheel profile, primary suspension stiffness, track gage, and rail cant on the wear of wheel profile were studied through multiple iterafive calculations. Numerical simulation results show that the type XP55 wheel profile has the smallest cumulative wear depth, and the type LM wheel profile has the largest wear depth. To reduce the wear of the wheel profile, the equivalent conicity of the wheel should not be too large or too small. On the other hand, a small primary vertical stiffness, a track gage around 1,435-1,438 mm, and a rail cant around 1:35-1:40 are beneficial for dynamic performance improvement and wheel wear alleviation.