As China’s economy develops,new energy technologies and intelligent driving have become a trend in the automobile industry.The development of new energy vehicles has accelerated,with X-by-wire chassis technology beco...As China’s economy develops,new energy technologies and intelligent driving have become a trend in the automobile industry.The development of new energy vehicles has accelerated,with X-by-wire chassis technology becoming the core technology for intelligent driving.This technology includes steer-,brake-,shift-,and throttle-by-wire systems.It is not only the key technology for new energy vehicles but also an important support for promoting their sustainable development.This article presents an in-depth study on X-by-wire chassis technology in new energy vehicles and its basic working principle.展开更多
Firms are embedded in complex networks,where diverse ideas combine and generate new ideas.Shareholders of firms are of-ten seen as critical external resources that have significant influence on firm innovation.The cur...Firms are embedded in complex networks,where diverse ideas combine and generate new ideas.Shareholders of firms are of-ten seen as critical external resources that have significant influence on firm innovation.The current literature tends to focus on the rela-tionship between firms and their shareholders,while paying less attention to the connections between firms with the same shareholders.This article identifies two types of network spillover effects,intra-city network effect and inter-city network effect,by visualizing the co-ownership networks in China’s electric vehicle(EV)industry.We find that firms with the same shareholders,which are defined as co-owned EV firms,are more innovative than non-co-owned ones.Furthermore,there are two dominant types of firm co-ownership ties formed by corporate and financial institution shareholders.While corporate shareholders help exploiting local tacit knowledge,financial institutions are more active in bridging inter-city connections.The conclusion is confirmed at both firm and city levels.This paper theor-izes the firm co-ownership network as a new form of institutional proximity and tested the result empirically.For policy consideration,we have emphasized the importance of building formal or informal inter-firm network,and the government should further enhance the knowledge flow channel by institutional construction.展开更多
Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada...Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.展开更多
Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and i...Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and international researchers have made significant advances in the areas of theory and methods,technology and systems,and ground experiments and flight tests.These advances have led to the development of OFS technology from the laboratory research stage to the engineering application stage.However,a few problems encountered in practical applications limit the wider application and further development of this technology,and thus urgently require solutions.This paper reviews the history of research on the deformation monitoring of flight vehicles.It examines various aspects of OFS-based deformation monitoring including the main varieties of OFS technology,technical advantages and disadvantages,suitability in aerospace applications,deformation reconstruction algorithms,and typical applications.This paper points out the key unresolved problems and the main evolution paradigms of engineering applications.It further discusses future development directions from the perspectives of an evolution paradigm,standardization,new materials,intelligentization,and collaboration.展开更多
The Long March 2 F(LM-2F) launch vehicle, the only launch vehicle designed for manned space flight in China, successfully launched the Tiangong 2 space laboratory and the Shenzhou 11 manned spaceship into orbits in 20...The Long March 2 F(LM-2F) launch vehicle, the only launch vehicle designed for manned space flight in China, successfully launched the Tiangong 2 space laboratory and the Shenzhou 11 manned spaceship into orbits in 2016 respectively. In this study, it introduces the technological improvements for enhancing the reliability of the LM-2F launch vehicle in the aspects of general technology, control system, manufacture and ground support system. The LM-2F launch vehicle will continue to provide more contributions to the Chinese Space Station Project with its high reliability and 100% success rate.展开更多
In this paper, the authors make a summary of current situation of research on the Auto Anti-Collision, briefly introduce the components and functions of the NSACA Simulation Platform and bring forward the project to r...In this paper, the authors make a summary of current situation of research on the Auto Anti-Collision, briefly introduce the components and functions of the NSACA Simulation Platform and bring forward the project to realize the simulation of an Automatic Anti-Collision control, based on the NSACA Simulation Platform. Finally give typical examples from a great deal of simulating tests and analyze them.展开更多
OVERVIEW China Academy of Launch Vehicle Technology (CALT) was founded on November 16, 1957. It was the first research unit devoted to the development of launch
Overloads of vehicle may cause damage to bridge structures,and how to assess the safety influence of heavy vehicles crossing the prototype bridge is one of the challenges.In this report,using a large amount of monitor...Overloads of vehicle may cause damage to bridge structures,and how to assess the safety influence of heavy vehicles crossing the prototype bridge is one of the challenges.In this report,using a large amount of monitored data collected from the structural health monitoring system(SHMS)in service of the prototype bridge,of which the bridge type is large-span continuous rigid frame bridge,and adopting FEM simulation technique,we suggested a dynamic reliability assessment method in the report to assess the safety impact of heavy vehicles on the prototype bridge during operation.In the first place,by using the health monitored strain data,of which the selected monitored data time range is before the opening of traffic,the quasi dynamic reliability around the embedded sensor with no traffic load effects is obtained;then,with FEM technology,the FEM simulation model of one main span of the prototype bridge is built by using ANSYS software and then the dynamic reliability when the heavy vehicles crossing the prototype bridge corresponding to the middle-span web plate is comprehensively analyzed and discussed.At last,assuming that the main beam stress state change is in the stage of approximately linear elasticity under heavy vehicle loads impact,the authors got the impact level of heavy vehicles effects on the dynamic reliability of the prototype bridge.Based on a large number of field measured data,the dynamic reliability value calculated by our proposed methodology is more accurate.The method suggested in the paper can do good for not only the traffic management but also the damage analysis of bridges.展开更多
The development of the new energy vehicle industry has become a key force driving the goals of carbon peak and carbon neutralization.To better guide future strategies,this study investigates the dual impact of subsidy...The development of the new energy vehicle industry has become a key force driving the goals of carbon peak and carbon neutralization.To better guide future strategies,this study investigates the dual impact of subsidy and dual-integral policies on the performance of new energy vehicle enterprises.This study first theorizes the influential mechanism according to the institutional-based approach and technical innovation theory,and then collects data from listed companies in the new energy vehicle industry from 2016 to 2020.The hypotheses are examined using a two-way fixed-effects model.The findings show that:(1)subsidy policies are can still improve enterprise performance,but not through green technology innovation;(2)the dual-credit policy can improve enterprise performance through green technology innovation;and(3)under current policy conditions,with subsidies declining annually,the interaction effects between the subsidy and dual-integral policies will also decrease.Thus,this study suggests that non-monetary industrial policy,represented by the dual credit policy is a more effective alternative to government subsidies.展开更多
BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly...BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly depend on the UAV operator’s experience.We used UAVs and artificial intelligence(AI)to provide a new technique for the triage of MCIs and more efficient solutions for emergency rescue.METHODS:This was a preliminary experimental study.We developed an intelligent triage system based on two AI algorithms,namely OpenPose and YOLO.Volunteers were recruited to simulate the MCI scene and triage,combined with UAV and Fifth Generation(5G)Mobile Communication Technology real-time transmission technique,to achieve triage in the simulated MCI scene.RESULTS:Seven postures were designed and recognized to achieve brief but meaningful triage in MCIs.Eight volunteers participated in the MCI simulation scenario.The results of simulation scenarios showed that the proposed method was feasible in tasks of triage for MCIs.CONCLUSION:The proposed technique may provide an alternative technique for the triage of MCIs and is an innovative method in emergency rescue.展开更多
As the mission needs of the autonomous underwater vehicles(AUV) have become increasingly varied and complex,the AUVs are developing in the direction of systematism, multifunction, and clustering technology, which prom...As the mission needs of the autonomous underwater vehicles(AUV) have become increasingly varied and complex,the AUVs are developing in the direction of systematism, multifunction, and clustering technology, which promotes the progress of key technologies and proposes a series of technical problems. Therefore, it is necessary to make systemic analysis and in-depth study for the progress of AUV's key technologies and innovative applications. The multi-functional mission needs and its key technologies involved in complex sea conditions are pointed out through analyzing the domestic and foreign technical programs, functional characteristics and future development plans. Furthermore, the overall design of a multi-moving state AUV is proposed. Then, technical innovations of the key technologies, such as thrust vector, propeller design, kinematics and dynamics, navigation control, and ambient flow field characteristics, are made, combining with the structural characteristics and motion characteristics of the new multi-moving state AUV. The results verify the good performance of the multi-moving state AUV and provide a theoretical guidance and technical support for the design of new AUV in real complex sea conditions.展开更多
At present, electric vehicles are very common means of transportation in our life. Contact charging is the main method of electric vehicles in China. With the continuous improvement of people’s awareness of environme...At present, electric vehicles are very common means of transportation in our life. Contact charging is the main method of electric vehicles in China. With the continuous improvement of people’s awareness of environmental protection, wireless charging technology is also under constant development. Currently, there are more static wireless charging technologies, while dynamic charging mode is only a perfection and supplement to it, which is crucial to the promotion of electric vehicles and is able to make charging work faster and easier. China has been researching dynamic wireless charging technology, but it has been affected by many factors. Therefore, it is necessary for the relevant personnel to solve the existing obstacles according to the characteristics of dynamic wireless charging technology and apply dynamic wireless charging technology in an efficient manner.展开更多
Three types of low-carbon vehicle technologies in China are reviewed. Potential effects are listed for those integrated energy-saving technologies for conventional vehicles. Low carbon transitions, including alternati...Three types of low-carbon vehicle technologies in China are reviewed. Potential effects are listed for those integrated energy-saving technologies for conventional vehicles. Low carbon transitions, including alternative vehicle power train systems and fuels, are discussed on their development status and trends, including life cycle primary fossil energy use and greenhouse gas emissions of each pathway. To further support the low-carbon vehicle technologies development, integrated policies should seek to: (1) employ those integrated energy-saving technologies, (2) apply hybrid electric technology, (3) commercialize electric vehicles through battery technology innovation, (4) support fuel cell vehicles and hydrogen technology R&D for future potential applications, (5) boost the R&D of second generation biofuel technology, and (6) conduct further research on applying low-carbon technologies including CO2 capture and storage technology to coal-based transportation solutions.展开更多
In the automotive concept design stages, functionally positioning the newly introduced autonomous technologies or remodelling the vehicle accordingly and evaluating the steps or determining the workload together with ...In the automotive concept design stages, functionally positioning the newly introduced autonomous technologies or remodelling the vehicle accordingly and evaluating the steps or determining the workload together with the collaboration intensity in the current flow is the initial step for the entire process efficiency. Therefore, the main purpose of the research is to reveal the effects of the autonomous technologies, which are newly included in the automotive concept design stages in automotive manufacturing industry companies that continue their lives under heavy competition conditions, according to the order of importance. The objective of this research is to both increase the efficiency of automotive concept design stages and to determine the measurement of the effects of new autonomous vehicle technologies in practice. Under the AHP method used in the research, the automotive concept design stages constitute the alternatives in the order of importance of the working structure, as well as the application variables of autonomous vehicle technologies, the criteria of the mathematical model. In addition, the research method modelled in the study, under the AHP mathematical model, reveals the performances or order of importance of the automotive concept design stages under autonomous technologies. Therefore, the resulting process performances constitute important inputs for efficiency and optimization studies under different research approaches. When the results of the study are examined, due to the high level of influence on the new vehicle concept design performance in automotive industry companies, the adaptation or application steps of autonomous vehicle technologies create new needs in the whole process. The determination of innovation creation clusters in the design process steps or the selection of the density of new technology adaptation in the stages and the order of importance provide a competitive advantage along with optimization in the basic functions of the automotive industry companies. However, the determination of new workload clusters in the mentioned automotive concept design process steps or the effect of autonomous technologies in the design stages, selection, transfer from theory to practice, multiple conflicting criteria and uncertain parameters create a very complex situation. For all these reasons, the Analytical Hierarchy Process (AHP), which is one of the widely used multi-criteria decision-making tools, is considered as a suitable approach for creating such order of importance and solving problems. In this study, an AHP mathematical model was created that determines the workload clusters created by autonomous vehicle technology applications that have just begun to guide the automotive concept design process, which is the main function of automotive manufacturing industry companies. Therefore, in line with the innovations, changes and adequacy criteria created by the current automotive concept design stages in the new autonomous vehicle technology adaptation, a stage order of importance has been selected.展开更多
New road transportation systems solutions create significant changes in existing automotive manufacturing industry products and technologies, from design to use. The conveniences within the framework of new appro...New road transportation systems solutions create significant changes in existing automotive manufacturing industry products and technologies, from design to use. The conveniences within the framework of new approaches brought by autonomous vehicle technologies primarily make individuals transition from driver duty to passenger and high-comfort alternative travel technologies. Therefore, the research: defining the path followed by the autonomous vehicle technologies, which lead to the development of the said new life model and automotive products within the future fiction, in the stages of designing new concept vehicles in practice or measuring the effect on the processes constitute important values for the future prediction of this sector. In addition, the research has focused on the effects of interdisciplinary studies at the automotive concept design stages, which are at the beginning of today’s lean and new product development process, where innovation goals or technologies emerge with more concrete needs. New autonomous vehicle technologies and the main purpose of revealing the interdisciplinary studies created by new disciplines in the current automotive concept design stages make significant contributions to the optimization of the lean product development process and value creation. For this reason, the automotive manufacturing industry, which is on the eve of a major transformation with the said new autonomous vehicle technologies;determining the needs or sustainable position in the flow of digital perception and orientation systems;determining value creation criteria related to the functioning of automotive concept design processes or new acceptance criteria through one-on-one interviews in the field;constitutes the focus of the research. The research has examined the new interdisciplinary studies and effects of new autonomous vehicle technologies in the automotive concept design phase, which is the first step of lean product development, with local and global automotive industry company comparisons in operation. Therefore, the differences and similarities between the concept design stages of global automotive companies that are both co-developers of new autonomous vehicle technologies and manufacturing automotive products and local automotive manufacturing companies that only assemble them determine the future competitive structuring of the industry.展开更多
This article presents the research and development of an electric vehicle(EV) in Department of Human-Robotics Saitama Institute of Technology,Japan.Electric mobile systems developed in our laboratory include a conve...This article presents the research and development of an electric vehicle(EV) in Department of Human-Robotics Saitama Institute of Technology,Japan.Electric mobile systems developed in our laboratory include a converted electric automobile,electric wheelchair and personal mobile robot.These mobile systems contribute to realize clean transportation since energy sources and devices from all vehicles,i.e.,batteries and electric motors,does not deteriorate the environment.To drive motors for vehicle traveling,robotic technologies were applied.展开更多
This is a review of high-speed train development in the sense of technology advances all over the world. Three generations of high-speed trains are classified according to their technical characteristics and maximum o...This is a review of high-speed train development in the sense of technology advances all over the world. Three generations of high-speed trains are classified according to their technical characteristics and maximum operating speed. Emphasis is given to the newly developed high-speed train in China, CRH380. The theoretical foundations and future development of CRH380 are briefly discussed.展开更多
The importance of polar ice as vital components of the global ocean-climate system is widely recognized.In this paper,we demonstrate the importance and urgency of polar research,describe the primary characteristics of...The importance of polar ice as vital components of the global ocean-climate system is widely recognized.In this paper,we demonstrate the importance and urgency of polar research,describe the primary characteristics of sea ice and ice shelves,and outline the current status and difficulties associated with sub-ice research.We highlight the importance of Unmanned Underwater Vehicles(UUVs)as important tools for oceanographic research.We present recent progress in UUV deployment in sub-ice research in the Arctic and the Antarctic,and review the latest international developments in UUV structure,navigation,payload,and field operation.Moreover,Chinese polar UUVs and their deployments in the polar regions are presented in detail.Key technologies and solutions regarding polar application of UUVs(e.g.,sub-ice navigation and positioning,energy supply and data transmission,and sub-ice guidance and recovery)are discussed.Given the current worldwide attention on polar science,the potential future directions of UUV-related polar research(e.g.,observations under Antarctic ice shelves,long-range surveys beneath Arctic sea ice and application of intelligent technology)are discussed.展开更多
A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An...A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An adaptive genetic algorithm is used to optimize the parameters of the neuron PI controller. The simulation result of the neuron PI control for semi-active suspension system of tracked vehicle indicates that the vertical amplitude,pitch angle and vertical acceleration of the vehicle are well controlled. The root mean square (RMS) of the vertical amplitude decreases by 37.2%,and 45.2% for the pitch angle,38.6% for the vertical acceleration. The research of neuron PI control experiment for the semi-active suspension system of the tracked vehicle model mining in benthal indicates that the RMS of the weight acceleration vibrating along the vertical direction decreases by 29.5%,the power spectral density resonance peak of the acceleration of the car body decreases by 23.8%.展开更多
All automobile manufacturing companies, Google and Microsoft have announced recently their production of the Fully Automated Autonomous Vehicles (FAAVs), otherwise known as driverless cars. A few FAAVs would be availa...All automobile manufacturing companies, Google and Microsoft have announced recently their production of the Fully Automated Autonomous Vehicles (FAAVs), otherwise known as driverless cars. A few FAAVs would be available in the market as early as in 2018, but mostly in 2020’s. When FAAVs will be available to and become affordable by the average consumers, the implications to the society would be far reaching. The purpose of the paper is to examine the prospect of the popularity of FAAVs and their socio-economic implications to the future society of the World. The paper examines potential impacts on selected sectors of the society including changes in demand for automobiles, its impact on the use of oil, on the environment, and on urban land uses, to list a few.展开更多
文摘As China’s economy develops,new energy technologies and intelligent driving have become a trend in the automobile industry.The development of new energy vehicles has accelerated,with X-by-wire chassis technology becoming the core technology for intelligent driving.This technology includes steer-,brake-,shift-,and throttle-by-wire systems.It is not only the key technology for new energy vehicles but also an important support for promoting their sustainable development.This article presents an in-depth study on X-by-wire chassis technology in new energy vehicles and its basic working principle.
基金Under the auspices of Natural Science Foundation of China(No.42122006,41971154)。
文摘Firms are embedded in complex networks,where diverse ideas combine and generate new ideas.Shareholders of firms are of-ten seen as critical external resources that have significant influence on firm innovation.The current literature tends to focus on the rela-tionship between firms and their shareholders,while paying less attention to the connections between firms with the same shareholders.This article identifies two types of network spillover effects,intra-city network effect and inter-city network effect,by visualizing the co-ownership networks in China’s electric vehicle(EV)industry.We find that firms with the same shareholders,which are defined as co-owned EV firms,are more innovative than non-co-owned ones.Furthermore,there are two dominant types of firm co-ownership ties formed by corporate and financial institution shareholders.While corporate shareholders help exploiting local tacit knowledge,financial institutions are more active in bridging inter-city connections.The conclusion is confirmed at both firm and city levels.This paper theor-izes the firm co-ownership network as a new form of institutional proximity and tested the result empirically.For policy consideration,we have emphasized the importance of building formal or informal inter-firm network,and the government should further enhance the knowledge flow channel by institutional construction.
文摘Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.
基金funded by the National Natural Science Foundation of China(51705024,51535002,51675053,61903041,61903042,and 61903041)the National Key Research and Development Program of China(2016YFF0101801)+4 种基金the National Hightech Research and Development Program of China(2015AA042308)the Innovative Equipment Pre-Research Key Fund Project(6140414030101)the Manned Space Pre-Research Project(20184112043)the Beijing Municipal Natural Science Foundation(F7202017 and 4204101)the Beijing Nova Program of Science and Technology(Z191100001119052)。
文摘Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and international researchers have made significant advances in the areas of theory and methods,technology and systems,and ground experiments and flight tests.These advances have led to the development of OFS technology from the laboratory research stage to the engineering application stage.However,a few problems encountered in practical applications limit the wider application and further development of this technology,and thus urgently require solutions.This paper reviews the history of research on the deformation monitoring of flight vehicles.It examines various aspects of OFS-based deformation monitoring including the main varieties of OFS technology,technical advantages and disadvantages,suitability in aerospace applications,deformation reconstruction algorithms,and typical applications.This paper points out the key unresolved problems and the main evolution paradigms of engineering applications.It further discusses future development directions from the perspectives of an evolution paradigm,standardization,new materials,intelligentization,and collaboration.
文摘The Long March 2 F(LM-2F) launch vehicle, the only launch vehicle designed for manned space flight in China, successfully launched the Tiangong 2 space laboratory and the Shenzhou 11 manned spaceship into orbits in 2016 respectively. In this study, it introduces the technological improvements for enhancing the reliability of the LM-2F launch vehicle in the aspects of general technology, control system, manufacture and ground support system. The LM-2F launch vehicle will continue to provide more contributions to the Chinese Space Station Project with its high reliability and 100% success rate.
文摘In this paper, the authors make a summary of current situation of research on the Auto Anti-Collision, briefly introduce the components and functions of the NSACA Simulation Platform and bring forward the project to realize the simulation of an Automatic Anti-Collision control, based on the NSACA Simulation Platform. Finally give typical examples from a great deal of simulating tests and analyze them.
文摘OVERVIEW China Academy of Launch Vehicle Technology (CALT) was founded on November 16, 1957. It was the first research unit devoted to the development of launch
文摘Overloads of vehicle may cause damage to bridge structures,and how to assess the safety influence of heavy vehicles crossing the prototype bridge is one of the challenges.In this report,using a large amount of monitored data collected from the structural health monitoring system(SHMS)in service of the prototype bridge,of which the bridge type is large-span continuous rigid frame bridge,and adopting FEM simulation technique,we suggested a dynamic reliability assessment method in the report to assess the safety impact of heavy vehicles on the prototype bridge during operation.In the first place,by using the health monitored strain data,of which the selected monitored data time range is before the opening of traffic,the quasi dynamic reliability around the embedded sensor with no traffic load effects is obtained;then,with FEM technology,the FEM simulation model of one main span of the prototype bridge is built by using ANSYS software and then the dynamic reliability when the heavy vehicles crossing the prototype bridge corresponding to the middle-span web plate is comprehensively analyzed and discussed.At last,assuming that the main beam stress state change is in the stage of approximately linear elasticity under heavy vehicle loads impact,the authors got the impact level of heavy vehicles effects on the dynamic reliability of the prototype bridge.Based on a large number of field measured data,the dynamic reliability value calculated by our proposed methodology is more accurate.The method suggested in the paper can do good for not only the traffic management but also the damage analysis of bridges.
基金This research is supported by the National Natural Science Foundation of China[Grant number.71801190].
文摘The development of the new energy vehicle industry has become a key force driving the goals of carbon peak and carbon neutralization.To better guide future strategies,this study investigates the dual impact of subsidy and dual-integral policies on the performance of new energy vehicle enterprises.This study first theorizes the influential mechanism according to the institutional-based approach and technical innovation theory,and then collects data from listed companies in the new energy vehicle industry from 2016 to 2020.The hypotheses are examined using a two-way fixed-effects model.The findings show that:(1)subsidy policies are can still improve enterprise performance,but not through green technology innovation;(2)the dual-credit policy can improve enterprise performance through green technology innovation;and(3)under current policy conditions,with subsidies declining annually,the interaction effects between the subsidy and dual-integral policies will also decrease.Thus,this study suggests that non-monetary industrial policy,represented by the dual credit policy is a more effective alternative to government subsidies.
基金Sanming Project of Medicine in Shenzhen(No.SZSM201911007)Shenzhen Stability Support Plan(20200824145152001)。
文摘BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly depend on the UAV operator’s experience.We used UAVs and artificial intelligence(AI)to provide a new technique for the triage of MCIs and more efficient solutions for emergency rescue.METHODS:This was a preliminary experimental study.We developed an intelligent triage system based on two AI algorithms,namely OpenPose and YOLO.Volunteers were recruited to simulate the MCI scene and triage,combined with UAV and Fifth Generation(5G)Mobile Communication Technology real-time transmission technique,to achieve triage in the simulated MCI scene.RESULTS:Seven postures were designed and recognized to achieve brief but meaningful triage in MCIs.Eight volunteers participated in the MCI simulation scenario.The results of simulation scenarios showed that the proposed method was feasible in tasks of triage for MCIs.CONCLUSION:The proposed technique may provide an alternative technique for the triage of MCIs and is an innovative method in emergency rescue.
基金Project(ZR2014EEP019) supported by the Natural Science Foundation of Shandong Province,ChinaProject(51505491) supported by the National Natural Science Foundation of China
文摘As the mission needs of the autonomous underwater vehicles(AUV) have become increasingly varied and complex,the AUVs are developing in the direction of systematism, multifunction, and clustering technology, which promotes the progress of key technologies and proposes a series of technical problems. Therefore, it is necessary to make systemic analysis and in-depth study for the progress of AUV's key technologies and innovative applications. The multi-functional mission needs and its key technologies involved in complex sea conditions are pointed out through analyzing the domestic and foreign technical programs, functional characteristics and future development plans. Furthermore, the overall design of a multi-moving state AUV is proposed. Then, technical innovations of the key technologies, such as thrust vector, propeller design, kinematics and dynamics, navigation control, and ambient flow field characteristics, are made, combining with the structural characteristics and motion characteristics of the new multi-moving state AUV. The results verify the good performance of the multi-moving state AUV and provide a theoretical guidance and technical support for the design of new AUV in real complex sea conditions.
文摘At present, electric vehicles are very common means of transportation in our life. Contact charging is the main method of electric vehicles in China. With the continuous improvement of people’s awareness of environmental protection, wireless charging technology is also under constant development. Currently, there are more static wireless charging technologies, while dynamic charging mode is only a perfection and supplement to it, which is crucial to the promotion of electric vehicles and is able to make charging work faster and easier. China has been researching dynamic wireless charging technology, but it has been affected by many factors. Therefore, it is necessary for the relevant personnel to solve the existing obstacles according to the characteristics of dynamic wireless charging technology and apply dynamic wireless charging technology in an efficient manner.
基金co-supported by the China National Social Science Foundation(09&ZD029)MOE Project of Key Research Institute of Humanities and Social Sciences at Universities in China (2009JJD790029)+1 种基金Doctoral Thesis Fund of Beijing Municipal Science and Technology Commission (zz200923)the CAERC program(Tsinghua/ GM/SAIC-China)
文摘Three types of low-carbon vehicle technologies in China are reviewed. Potential effects are listed for those integrated energy-saving technologies for conventional vehicles. Low carbon transitions, including alternative vehicle power train systems and fuels, are discussed on their development status and trends, including life cycle primary fossil energy use and greenhouse gas emissions of each pathway. To further support the low-carbon vehicle technologies development, integrated policies should seek to: (1) employ those integrated energy-saving technologies, (2) apply hybrid electric technology, (3) commercialize electric vehicles through battery technology innovation, (4) support fuel cell vehicles and hydrogen technology R&D for future potential applications, (5) boost the R&D of second generation biofuel technology, and (6) conduct further research on applying low-carbon technologies including CO2 capture and storage technology to coal-based transportation solutions.
文摘In the automotive concept design stages, functionally positioning the newly introduced autonomous technologies or remodelling the vehicle accordingly and evaluating the steps or determining the workload together with the collaboration intensity in the current flow is the initial step for the entire process efficiency. Therefore, the main purpose of the research is to reveal the effects of the autonomous technologies, which are newly included in the automotive concept design stages in automotive manufacturing industry companies that continue their lives under heavy competition conditions, according to the order of importance. The objective of this research is to both increase the efficiency of automotive concept design stages and to determine the measurement of the effects of new autonomous vehicle technologies in practice. Under the AHP method used in the research, the automotive concept design stages constitute the alternatives in the order of importance of the working structure, as well as the application variables of autonomous vehicle technologies, the criteria of the mathematical model. In addition, the research method modelled in the study, under the AHP mathematical model, reveals the performances or order of importance of the automotive concept design stages under autonomous technologies. Therefore, the resulting process performances constitute important inputs for efficiency and optimization studies under different research approaches. When the results of the study are examined, due to the high level of influence on the new vehicle concept design performance in automotive industry companies, the adaptation or application steps of autonomous vehicle technologies create new needs in the whole process. The determination of innovation creation clusters in the design process steps or the selection of the density of new technology adaptation in the stages and the order of importance provide a competitive advantage along with optimization in the basic functions of the automotive industry companies. However, the determination of new workload clusters in the mentioned automotive concept design process steps or the effect of autonomous technologies in the design stages, selection, transfer from theory to practice, multiple conflicting criteria and uncertain parameters create a very complex situation. For all these reasons, the Analytical Hierarchy Process (AHP), which is one of the widely used multi-criteria decision-making tools, is considered as a suitable approach for creating such order of importance and solving problems. In this study, an AHP mathematical model was created that determines the workload clusters created by autonomous vehicle technology applications that have just begun to guide the automotive concept design process, which is the main function of automotive manufacturing industry companies. Therefore, in line with the innovations, changes and adequacy criteria created by the current automotive concept design stages in the new autonomous vehicle technology adaptation, a stage order of importance has been selected.
文摘New road transportation systems solutions create significant changes in existing automotive manufacturing industry products and technologies, from design to use. The conveniences within the framework of new approaches brought by autonomous vehicle technologies primarily make individuals transition from driver duty to passenger and high-comfort alternative travel technologies. Therefore, the research: defining the path followed by the autonomous vehicle technologies, which lead to the development of the said new life model and automotive products within the future fiction, in the stages of designing new concept vehicles in practice or measuring the effect on the processes constitute important values for the future prediction of this sector. In addition, the research has focused on the effects of interdisciplinary studies at the automotive concept design stages, which are at the beginning of today’s lean and new product development process, where innovation goals or technologies emerge with more concrete needs. New autonomous vehicle technologies and the main purpose of revealing the interdisciplinary studies created by new disciplines in the current automotive concept design stages make significant contributions to the optimization of the lean product development process and value creation. For this reason, the automotive manufacturing industry, which is on the eve of a major transformation with the said new autonomous vehicle technologies;determining the needs or sustainable position in the flow of digital perception and orientation systems;determining value creation criteria related to the functioning of automotive concept design processes or new acceptance criteria through one-on-one interviews in the field;constitutes the focus of the research. The research has examined the new interdisciplinary studies and effects of new autonomous vehicle technologies in the automotive concept design phase, which is the first step of lean product development, with local and global automotive industry company comparisons in operation. Therefore, the differences and similarities between the concept design stages of global automotive companies that are both co-developers of new autonomous vehicle technologies and manufacturing automotive products and local automotive manufacturing companies that only assemble them determine the future competitive structuring of the industry.
文摘This article presents the research and development of an electric vehicle(EV) in Department of Human-Robotics Saitama Institute of Technology,Japan.Electric mobile systems developed in our laboratory include a converted electric automobile,electric wheelchair and personal mobile robot.These mobile systems contribute to realize clean transportation since energy sources and devices from all vehicles,i.e.,batteries and electric motors,does not deteriorate the environment.To drive motors for vehicle traveling,robotic technologies were applied.
文摘This is a review of high-speed train development in the sense of technology advances all over the world. Three generations of high-speed trains are classified according to their technical characteristics and maximum operating speed. Emphasis is given to the newly developed high-speed train in China, CRH380. The theoretical foundations and future development of CRH380 are briefly discussed.
基金supported by the projects of Chinese National Key R&D Program(Chinese National 863 Program,Grant nos.2017YFC0821204,2017YFC0305901)the Marine Science Research Center of the Chinese Academy of Sciences(Grant no.COMS2019Z02).
文摘The importance of polar ice as vital components of the global ocean-climate system is widely recognized.In this paper,we demonstrate the importance and urgency of polar research,describe the primary characteristics of sea ice and ice shelves,and outline the current status and difficulties associated with sub-ice research.We highlight the importance of Unmanned Underwater Vehicles(UUVs)as important tools for oceanographic research.We present recent progress in UUV deployment in sub-ice research in the Arctic and the Antarctic,and review the latest international developments in UUV structure,navigation,payload,and field operation.Moreover,Chinese polar UUVs and their deployments in the polar regions are presented in detail.Key technologies and solutions regarding polar application of UUVs(e.g.,sub-ice navigation and positioning,energy supply and data transmission,and sub-ice guidance and recovery)are discussed.Given the current worldwide attention on polar science,the potential future directions of UUV-related polar research(e.g.,observations under Antarctic ice shelves,long-range surveys beneath Arctic sea ice and application of intelligent technology)are discussed.
基金Project(2010GK3091) supported by Industrial Support Project in Science and Technology of Hunan Province, ChinaProject(10B058) supported by Excellent Youth Foundation Subsidized Project of Hunan Provincial Education Department, China
文摘A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An adaptive genetic algorithm is used to optimize the parameters of the neuron PI controller. The simulation result of the neuron PI control for semi-active suspension system of tracked vehicle indicates that the vertical amplitude,pitch angle and vertical acceleration of the vehicle are well controlled. The root mean square (RMS) of the vertical amplitude decreases by 37.2%,and 45.2% for the pitch angle,38.6% for the vertical acceleration. The research of neuron PI control experiment for the semi-active suspension system of the tracked vehicle model mining in benthal indicates that the RMS of the weight acceleration vibrating along the vertical direction decreases by 29.5%,the power spectral density resonance peak of the acceleration of the car body decreases by 23.8%.
文摘All automobile manufacturing companies, Google and Microsoft have announced recently their production of the Fully Automated Autonomous Vehicles (FAAVs), otherwise known as driverless cars. A few FAAVs would be available in the market as early as in 2018, but mostly in 2020’s. When FAAVs will be available to and become affordable by the average consumers, the implications to the society would be far reaching. The purpose of the paper is to examine the prospect of the popularity of FAAVs and their socio-economic implications to the future society of the World. The paper examines potential impacts on selected sectors of the society including changes in demand for automobiles, its impact on the use of oil, on the environment, and on urban land uses, to list a few.