期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Advances in Active Suspension Systems for Road Vehicles
1
作者 Min Yu Simos AEvangelou Daniele Dini 《Engineering》 SCIE EI CAS CSCD 2024年第2期160-177,共18页
Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and... Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and the compatibility of ASSs with vehicle electrification and autonomy.Existing review papers on ASSs mainly cover dynamics modeling and robust control;however,the gap between academic research outcomes and industrial application requirements has not yet been bridged,hindering most ASS research knowledge from being transferred to vehicle companies.This paper comprehensively reviews advances in ASSs for road vehicles,with a focus on hardware structures and control strategies.In particular,state-of-the-art ASSs that have been recently adopted in production cars are discussed in detail,including the representative solutions of Mercedes active body control(ABC)and Audi predictive active suspension;novel concepts that could become alternative candidates are also introduced,including series active variable geometry suspension,and the active wheel-alignment system.ASSs with compact structure,small mass increment,low power consumption,high-frequency response,acceptable economic costs,and high reliability are more likely to be adopted by car manufacturers.In terms of control strategies,the development of future ASSs aims not only to stabilize the chassis attitude and attenuate the chassis vibration,but also to enable ASSs to cooperate with other modules(e.g.,steering and braking)and sensors(e.g.,cameras)within a car,and even with high-level decision-making(e.g.,reference driving speed)in the overall transportation system-strategies that will be compatible with the rapidly developing electric and autonomous vehicles. 展开更多
关键词 Active suspension vehicle dynamics Robust control Ride comfort Chassis attitude
下载PDF
An Apparatus Design for the Vehicle Control Scheme in Personal Rapid Transit System
2
作者 Jun-Ho Lee 《Journal of Mechanics Engineering and Automation》 2013年第5期325-333,共9页
A new transportation technology known as personal rapid transit (PRT) is being developed by multiple different companies around the world, and one system is under commercial operations in the United Kingdom. Each de... A new transportation technology known as personal rapid transit (PRT) is being developed by multiple different companies around the world, and one system is under commercial operations in the United Kingdom. Each design is different, but they all share a need to operate many automated transit vehicles at very close headways. Safe operation will require a level of control an order of magnitude above any current transit system. As a result, new techniques will be needed for the development and testing of the mechanical and control systems. In this paper an apparatus for developing and testing a PRT vehicle control scheme is demonstrated. This system is composed of independent modules that represent virtual vehicles, a central control system, a man-machine interface and a monitoring device. It can be used to implement and to evaluate the designed vehicle control algorithm. The vehicle control algorithm is designed and simulated in a combined simulation platform that consists of Matlab/Simulink and Labview Simulation Interface Toolkit. Simple operational scenarios are proposed for the testing of the proposed vehicle control apparatus. 展开更多
关键词 Personal rapid transit vehicle control scheme virtual vehicles safe operation headway.
下载PDF
COMPOSITIVE EMISSION CONTROL SYSTEM OF GASOLINE VEHICLE
3
作者 CAI Ruibin CHEN Zijian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期401-406,共6页
The working principle of a kind of compositive emission control system is inquired into, which includes exhaust heater, secondary air supplement, exhaust gas recirculation (EGR), thermal reactor and catalytic conver... The working principle of a kind of compositive emission control system is inquired into, which includes exhaust heater, secondary air supplement, exhaust gas recirculation (EGR), thermal reactor and catalytic converter, etc. The purification effect of CO, HC and NOx emission of the gasoline spark ignite (S.I.) engine is studied. The entire vehicle driving cycle tests based on the national emission standard and a series of the gasoline engine-testing bench tests including full load characteristic experiment, load characteristic experiment and idle speed experiment are done. The results show that the system has a very good emission control effect to CO, HC and NOx of gasoline engine. The construction of the system is very simple and can be mounted on the exhaust pipe conveniently without any alteration of the vehicle-use gasoline engine. 展开更多
关键词 vehicle Gasoline engine Low emission Exhaust emission control system
下载PDF
A Hybrid Approach to Modeling and Control of Vehicle Height for Electronically Controlled Air Suspension 被引量:8
4
作者 SUN Xiaoqiang CAI Yingfeng +2 位作者 WANG Shaohua LIU Yanling CHEN Long 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期152-162,共11页
The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on t... The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties. 展开更多
关键词 electronically controlled air suspension vehicle height control hybrid system mixed logical dynamical model predictive control
下载PDF
A new robust fuzzy method for unmanned flying vehicle control 被引量:5
5
作者 Mojtaba Mirzaei Mohammad Eghtesad Mohammad Mahdi Alishahi 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2166-2182,共17页
A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. T... A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control(IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance. 展开更多
关键词 adaptive fuzzy sliding-mode control unmanned flying vehicle control underactuated system Lyapunov stability high speed underwater vehicle
下载PDF
Post-Impact Motion Planning and Tracking Control for Autonomous Vehicles 被引量:4
6
作者 Cong Wang Zhenpo Wang +2 位作者 Lei Zhang Huilong Yu Dongpu Cao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期315-332,共18页
There is an increasing awareness of the need to reduce traffic accidents and fatality due to vehicle collision.Post-impact hazards can be more serious as the driver may fail to maintain effective control after collisi... There is an increasing awareness of the need to reduce traffic accidents and fatality due to vehicle collision.Post-impact hazards can be more serious as the driver may fail to maintain effective control after collisions.To avoid subsequent crash events and to stabilize the vehicle,this paper proposes a post-impact motion planning and stability control method for autonomous vehicles.An enabling motion planning method is proposed for post-impact situations by combining the polynomial curve and artificial potential field while considering obstacle avoidance.A hierarchical controller that consists of an upper and a lower controller is then developed to track the planned motion.In the upper controller,a time-varying linear quadratic regulator is presented to calculate the desired generalized forces.In the lower controller,a nonlinear-optimization-based torque allocation algorithm is proposed to optimally coordinate the actuators to realize the desired generalized forces.The proposed scheme is verified under comprehensive driving scenarios through hardware-in-loop tests. 展开更多
关键词 Active safety Post-impact control Motion planning vehicle dynamics control
下载PDF
Coordinated Control Architecture for Motion Management in ADAS Systems 被引量:3
7
作者 Tzu-Chi Lin Siyuan Ji +1 位作者 Charles E. Dickerson David Battersby 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期432-444,共13页
Advanced driver assistance systems(ADAS) seek to provide drivers and passengers of automotive vehicles increased safety and comfort. Original equipment manufacturers are integrating and developing systems for distance... Advanced driver assistance systems(ADAS) seek to provide drivers and passengers of automotive vehicles increased safety and comfort. Original equipment manufacturers are integrating and developing systems for distance keeping, lane keeping and changing and other functionalities. The modern automobile is a complex system of systems. How the functionalities of advanced driver assistance are implemented and coordinated across the systems of the vehicle is generally not made available to the wider research community by the developers and manufactures. This paper seeks to begin filling this gap by assembling open source physics models of the vehicle dynamics and ADAS command models. Additionally, in order to facilitate ADAS development and testing without having access to the details of ADAS, a coordinated control architecture for motion management is also proposed for distributing ADAS motion control commands over vehicle systems. The architecture is demonstrated in a case study where motion is coordinated between the steering and the braking systems, which are typically used only for a single functionality. The integrated vehicle and system dynamics using the coordinated control architecture are simulated for various driving tasks. It is seen that improved trajectory following can be achieved by the proposed coordinated control architecture. The models, simulations and control architecture are made available for open access. 展开更多
关键词 Index Terms-Coordinated system feed-forward and feedbackcontrol integration control modeling and simulation tire mod-eling vehicle modeling vehicle dynamics control.
下载PDF
Direct Yaw Moment Control for Distributed Drive Electric Vehicle Handling Performance Improvement 被引量:30
8
作者 YU Zhuoping LENG Bo +2 位作者 XIONG Lu FENG Yuan SHI Fenmiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期486-497,共12页
For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. A... For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved. 展开更多
关键词 direct yaw moment control distributed drive electric vehicle handling performance improvement state feedback control
下载PDF
INTEGRATED CONTROL FOR VEHICLE YAW MOTION USING DOUBLE-COST-FUNCTION LQR 被引量:5
9
《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2000年第3期228-233,共7页
关键词 In INTEGRATED control FOR vehicle YAW MOTION USING DOUBLE-COST-FUNCTION LQR
下载PDF
Vehicle path tracking by integrated chassis control 被引量:10
10
作者 Saman Salehpour Yaghoub Pourasad Seyyed Hadi Taheri 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1378-1388,共11页
The control problem of trajectory based path following for passenger vehicles is studied. Comprehensive nonlinear vehicle model is utilized for simulation vehicle response during various maneuvers in MATLAB/Simulink. ... The control problem of trajectory based path following for passenger vehicles is studied. Comprehensive nonlinear vehicle model is utilized for simulation vehicle response during various maneuvers in MATLAB/Simulink. In order to follow desired path, a driver model is developed to enhance closed loop driver/vehicle model. Then, linear quadratic regulator(LQR) controller is developed which regulates direct yaw moment and corrective steering angle on wheels. Particle swam optimization(PSO) method is utilized to optimize the LQR controller for various dynamic conditions. Simulation results indicate that, over various maneuvers, side slip angle and lateral acceleration can be reduced by 10% and 15%, respectively, which sustain the vehicle stable. Also, anti-lock brake system is designed for longitudinal dynamics of vehicle to achieve desired slip during braking and accelerating. Proposed comprehensive controller demonstrates that vehicle steerability can increase by about 15% during severe braking by preventing wheel from locking and reducing stopping distance. 展开更多
关键词 vehicle dynamics active control system optimal controller electronic stability program(ESP) particle swam optimization(PSO)
下载PDF
Serret-Frenet frame based on path following control for underactuated unmanned surface vehicles with dynamic uncertainties 被引量:11
11
作者 廖煜雷 张铭钧 万磊 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期214-223,共10页
The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, externa... The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By introducing the Serret-Frenet frame and global coordinate transformation, the control problem of underactuated system(a nonlinear system with single-input and ternate-output) is transformed into the control problem of actuated system(a single-input and single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller(BADSMC)is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control(DSMC). Then, it is proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation results are presented to illustrate the effectiveness of the proposed controller. 展开更多
关键词 path following underactuated unmanned surface vehicle backstepping dynamic sliding mode control
下载PDF
A Novel Pre-control Method of Vehicle Dynamics Stability Based on Critical Stable Velocity during Transient Steering Maneuvering 被引量:9
12
作者 CHEN Jie SONG Jian +3 位作者 LI Liang RAN Xu JIA Gang WU Kaihui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期475-485,共11页
The current research of direct yaw moment control(DYC) system focus on the design of target yaw moment and the distribution of wheel brake force. The differential braking intervention can effectively improve the lat... The current research of direct yaw moment control(DYC) system focus on the design of target yaw moment and the distribution of wheel brake force. The differential braking intervention can effectively improve the lateral stability of the vehicle, however, the effect of DYC can be improved a step further by applying the control of vehicle longitudinal velocity. In this paper, the relationship between the vehicle longitudinal velocity and lateral stability is studied, and the simulation results show that a decrease of 5 km/h of longitudinal velocity at a particular situation can bring 100° increasing of stable steering upper limit. A critical stable velocity considering the effect of steering and yaw rate measurement is defined to evaluate the risk of losing steer-ability or stability. A novel velocity pre-control method is proposed by using a hierarchical pre-control logic and is integrated with the traditional DYC system. The control algorithm is verified through a hardware in-the-loop simulation system. Double lane change(DLC) test results on both high friction coefficient(μ) and low μ roads show that by using the pre-control method, the steering effort in DLC test can be reduced by 38% and 51% and the peak value of brake pressure control can be reduced by 20% and 12% respectively on high μ and low μ roads, the lateral stability is also improved. This research proposes a novel DYC system with lighter control effort and better control effect. 展开更多
关键词 vehicle dynamics direct yaw moment control critical stable velocity pre-control
下载PDF
Neural Network Based Feedback Linearization Control of an Unmanned Aerial Vehicle 被引量:3
13
作者 Dan Necsulescu Yi-Wu Jiang Bumsoo Kim 《International Journal of Automation and computing》 EI 2007年第1期71-79,共9页
This paper presents a flight control design for an unmanned aerial vehicle (UAV) using a nonlinear autoregressive moving average (NARMA-L2) neural network based feedback linearization and output redefinition techn... This paper presents a flight control design for an unmanned aerial vehicle (UAV) using a nonlinear autoregressive moving average (NARMA-L2) neural network based feedback linearization and output redefinition technique. The UAV investigated is non- minimum phase. The output redefinition technique is used in such a way that the resulting system to be inverted is a minimum phase system. The NARMA-L2 neural network is trained off-line for forward dynamics of the UAV model with redefined output and is then inverted to force the real output to approximately track a command input. Simulation results show that the proposed approaches have good performance. 展开更多
关键词 Nonlinear unmanned aerial vehicle (UAV) flight control non-minimum phase output redefinition neural network basedfeedback linearization.
下载PDF
Research on Direct Yaw Moment Control Strategy of Distributed-Drive Electric Vehicle Based on Joint Observer 被引量:1
14
作者 Quan Min Min Deng +3 位作者 Zichen Zheng Shu Wang Xianyong Gui Haichuan Zhang 《Energy Engineering》 EI 2021年第4期853-874,共22页
Combined with the characteristics of the distributed-drive electric vehicle and direct yaw moment control,a double-layer structure direct yaw moment controller is designed.The upper additional yaw moment controller is... Combined with the characteristics of the distributed-drive electric vehicle and direct yaw moment control,a double-layer structure direct yaw moment controller is designed.The upper additional yaw moment controller is constructed based on model predictive control.Aiming at minimizing the utilization rate of tire adhesion and constrained by the working characteristics of motor system and brake system,a quadratic programming active set was designed to optimize the distribution of additional yaw moments.The road surface adhesion coefficient has a great impact on the reliability of direct yaw moment control,for which joint observer of vehicle state parameters and road surface parameters is designed by using unscented Kalman filter algorithm,which correlates vehicle state observer and road surface parameter observer to form closed-loop feedback correction.The results show that compared to the“feedforward+feedback”control,the vehicle’s error of yaw rate and sideslip angle by the model predictive control is smaller,which can improve the vehicle stability effectively.In addition,according to the results of the docking road simulation test,the joint observer of vehicle state and road surface parameters can improve the adaptability of the vehicle stability controller to the road conditions with variable adhesion coefficients. 展开更多
关键词 vehicle stability control distributed drive direct yaw moment control joint observer
下载PDF
Map-based control method for vehicle stability enhancement 被引量:2
15
作者 Moon-Young Yoon Seung-Hwan Baek +1 位作者 Kwang-Suk Boo Heung-Seob Kim 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期114-120,共7页
This work proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-r... This work proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-referenced control uses the sliding mode method to determine the compensated yaw moment; in contrast, the proposed map-based control uses the compensated yaw moment map acquired by vehicle stability analysis. The vehicle stability region is calculated by a topological method based on the trajectory reversal method. A 2-DOF vehicle model and Pacejka's tire model are used to evaluate the proposed map-based control method. The properties of model-referenced control and map-based control are compared under various road conditions and driving inputs. Model-referenced control uses a control input to satisfy the linear reference model, and it generates unnecessary tire lateral forces that may lead to worse performance than an uncontrolled vehicle with step steering input on a road with a low friction coefficient. However, map-based control determines a compensated yaw moment to maintain the vehicle within the stability region,so the typical responses of vehicle enable to converge rapidly. The simulation results with sine and step steering show that map-based control provides better the tracking responsibility and control performance than model-referenced control. 展开更多
关键词 model-referenced control map-based control vehicle stability yaw moment
下载PDF
Combined Control Allocation and Sliding Mode Control in the Dynamic Control of a Vehicle with Eight In-Wheel Motors
16
作者 Rui Zhang Chengning Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2017年第1期58-66,共9页
An eight wheel independently driving steering(8 WIDBS)electric vehicle is studied in this paper.The vehicle is equipped with eight in-wheel motors and a steer-by-wire system.A hierarchically coordinated vehicle dyna... An eight wheel independently driving steering(8 WIDBS)electric vehicle is studied in this paper.The vehicle is equipped with eight in-wheel motors and a steer-by-wire system.A hierarchically coordinated vehicle dynamic control(HCVDC)system,including a high-level vehicle motion controller,a control allocation,an inverse tire model and a lower-level slip/slip angle controller,is proposed for the over-actuated vehicle system.The high-level sliding mode vehicle motion controller is designed to produce desired total forces and yaw moment,distributed to longitudinal and lateral forces of each tire by an advanced control allocation method.And the slip controller is designed to use a sliding mode control method to follow the desired slip ratios by manipulating the corresponding in-wheel motor torques.Evaluation of the overall system is accomplished by sine maneuver simulation.Simulation results confirm that the proposed control system can coordinate among the redundant and constrained actuators to achieve the vehicle dynamic control task and improve the vehicle stability. 展开更多
关键词 hierarchically coordinated vehicle dynamic control control allocation sliding modecontrol
下载PDF
Guest Editorial for Special Issue on Autonomous Control of Unmanned Aerial Vehicles
17
作者 Derong Liu Changyin Sun Bin Xian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期1-1,共1页
IN recent years,unmanned aerial vehicles(UAVs)have been widely employed in different applications,both military and civilian.Especially,a fast growing civil UAV market is predicted over the next decades.However,most c... IN recent years,unmanned aerial vehicles(UAVs)have been widely employed in different applications,both military and civilian.Especially,a fast growing civil UAV market is predicted over the next decades.However,most currently developed UAVs depend on simple control strategy.They require exact modeling of the UAVs dynamics and are vulnerable to external disturbance.Therefore,there is great 展开更多
关键词 for in ET IS UAV Guest Editorial for Special Issue on Autonomous control of Unmanned Aerial vehicles on of
下载PDF
Active suspension with optimal control based on a full vehicle model
18
作者 张军伟 陈思忠 赵玉壮 《Journal of Beijing Institute of Technology》 EI CAS 2016年第1期81-90,共10页
The 7-DOF model of a full vehicle with an active suspension is developed in this paper.The model is written into the state equation style.Actuator forces are treated as inputs in the state equations.Based on the basic... The 7-DOF model of a full vehicle with an active suspension is developed in this paper.The model is written into the state equation style.Actuator forces are treated as inputs in the state equations.Based on the basic optimal control theory,the optimal gains for the control system are figured out.So an optimal controller is developed and implemented using Matlab/Simulink,where the Riccati equation with coupling terms is deduced using the Hamilton equation.The all state feedback is chosen for the controller.The gains for all vehicle variables are traded off so that majority of indexes were up to optimal.The active suspension with optimal control is simulated in frequency domain and time domain separately,and compared with a passive suspension.Throughout all the simulation results,the optimal controller developed in this paper works well in the majority of instances.In all,the comfort and ride performance of the vehicle are improved under the active suspension with optimal control. 展开更多
关键词 active suspension full vehicle model optimal control frequencydomain time domain
下载PDF
Robust parametric approach for tracking control of an air-breathing hypersonic cruise vehicle
19
作者 蔡光斌 段广仁 +1 位作者 胡昌华 谭峰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第1期58-64,共7页
To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furtherm... To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furthermore, the flight control problem is formulated as a robust model tracking control problem. And then, based on the robust parametric approach, eigenstructure assignment and reference model tracking theory, a parametric optimization method for robust controller design is presented. The simulation results show the effectiveness of the proposed approach. 展开更多
关键词 hypersonic cruise vehicle robust parametric approach tracking control eigenstructure assignment parameter optimization
下载PDF
A leveling mechanism for the platform based on booms-constraint control of aerial vehicle
20
作者 张翠红 Cao Xuepeng +3 位作者 Jiao Shengjie Yang Bin Wang Guanhong Zhou Zhaoqiang 《High Technology Letters》 EI CAS 2017年第3期322-329,共8页
In order to achieve an automatic leveling function for work platforms of aerial vehicles with mixed-booms( MAV) in full elevating domain,an auto-leveling mechanism for the platform is proposed based on a control metho... In order to achieve an automatic leveling function for work platforms of aerial vehicles with mixed-booms( MAV) in full elevating domain,an auto-leveling mechanism for the platform is proposed based on a control method of booms-constraint,where mixed-boom structures and elevating characteristics are considered. Three models of constraint strategies include non-constraint model,elevating constraint model and lowering constraint model,which is designed to meet the leveling requirements in full working extent. Through the hydro-mechatronic unified modeling,a virtual prototype model is set up based on the auto-leveling mechanism,and leveling performances of the platform are studied during booms elevating to the maximum working height and extent. Simulation results show that the control method of booms-constraint can realize auto-leveling of the platform under two typical working conditions,meanwhile a leveling deviation appears at the constrained point,but the platform inclination is adjusted in the permissible range. The control method does not only restrict booms' freedom elevating to a certain extent,but also impacts the booms extending to the maximum working range. Experimental results verify that the auto-leveling mechanism based on booms-constraint control is valid and rational,which provides an effective technology approach for development of the platform leveling of MAV. 展开更多
关键词 mixed-booms aerial vehicle(MAV) platform leveling booms-constraint control model simulating
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部