This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram...This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.展开更多
Disturbance observer-based control method has achieved good results in the carfollowing scenario of intelligent and connected vehicle(ICV).However,the gain of conventional extended disturbance observer(EDO)-based cont...Disturbance observer-based control method has achieved good results in the carfollowing scenario of intelligent and connected vehicle(ICV).However,the gain of conventional extended disturbance observer(EDO)-based control method is usually set manually rather than adjusted adaptively according to real time traffic conditions,thus declining the car-following performance.To solve this problem,a car-following strategy of ICV using EDO adjusted by reinforcement learning is proposed.Different from the conventional method,the gain of proposed strategy can be adjusted by reinforcement learning to improve its estimation accuracy.Since the“equivalent disturbance”can be compensated by EDO to a great extent,the disturbance rejection ability of the carfollowing method will be improved significantly.Both Lyapunov approach and numerical simulations are carried out to verify the effectiveness of the proposed method.展开更多
The electrification of vehicle helps to improve its operation efficiency and safety.Due to fast development of network,sensors,as well as computing technology,it becomes realizable to have vehicles driving autonomousl...The electrification of vehicle helps to improve its operation efficiency and safety.Due to fast development of network,sensors,as well as computing technology,it becomes realizable to have vehicles driving autonomously.To achieve autonomous driving,several steps,including environment perception,path-planning,and dynamic control,need to be done.However,vehicles equipped with on-board sensors still have limitations in acquiring necessary environmental data for optimal driving decisions.Intelligent and connected vehicles(ICV)cloud control system(CCS)has been introduced as a new concept as it is a potentially synthetic solution for high level automated driving to improve safety and optimize traffic flow in intelligent transportation.This paper systematically investigated the concept of cloud control system from cloud related applications on ICVs,and cloud control system architecture design,as well as its core technologies development.Based on the analysis,the challenges and suggestions on cloud control system development have been addressed.展开更多
In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent v...In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent vehicle systems. Based on the dynamical model of vehicle, by applying Lyapunov function method, the control problem for lane keeping in the presence of parametric uncertainty is studied, the direct adaptive algorithm to compensate for parametric variations is proposed and the terminal sliding mode variable structure control laws are designed with look-ahead references systems. The stability of the system is investigated from the zero dynamics analysis. Simulation results show that convergence rates of the lateral displacement error, yaw angle error and slid angle are fast.展开更多
Based on analysis and evaluation on the circular, cosine type, constant-speed offset type and ladder type lane change trajectory, this paper proposes an intelligent vehicle lane change trajectory model under multiple ...Based on analysis and evaluation on the circular, cosine type, constant-speed offset type and ladder type lane change trajectory, this paper proposes an intelligent vehicle lane change trajectory model under multiple barriers, proposes its dynamic constraints in the light of the cellular automata theory, obtains the desired lane change trajectory using this method, and finally changes into a simple coefficient selection problem. Secondly, based on the quadratic optimal control theory, this paper proposes a state space analysis method of intelligent vehicle lateral control, and designs an optimal controller for lateral stability of H2 vehicles. The computer simulation results show that compared with other vehicle trajectory methods, the method in this paper is able to simply and rapidly describe the trajectory, and can describe the intelligent vehicle lane change trajectory under a variety of situations, wherein the controller is reliable and capable of fast convergence.展开更多
Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be reg...Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem.展开更多
To resolve the response delay and overshoot problems of intelligent vehicles facing emergency lane-changing due to proportional-integral-differential(PID)parameter variation,an active steering control method based on ...To resolve the response delay and overshoot problems of intelligent vehicles facing emergency lane-changing due to proportional-integral-differential(PID)parameter variation,an active steering control method based on Convolutional Neural Network and PID(CNNPID)algorithm is constructed.First,a steering control model based on normal distribution probability function,steady constant radius steering,and instantaneous lane-change-based active for straight and curved roads is established.Second,based on the active steering control model,a three-dimensional constraint-based fifth-order polynomial equation lane-change path is designed to address the stability problem with supersaturation and sideslip due to emergency lane changing.In addition,a hierarchical CNNPID Controller is constructed which includes two layers to avoid collisions facing emergency lane changing,namely,the lane change path tracking PID control layer and the CNN control performance optimization layer.The scaled conjugate gradient backpropagation-based forward propagation control law is designed to optimize the PID control performance based on input parameters,and the elastic backpropagation-based module is adopted for weight correction.Finally,comparison studies and simulation/real vehicle test results are presented to demonstrate the effectiveness,significance,and advantages of the proposed controller.展开更多
Unmanned vehicles are currently facing many difficulties and challenges in improving safety performance when running in complex urban road traffic environments,such as low intelligence and poor comfort perfor-mance in...Unmanned vehicles are currently facing many difficulties and challenges in improving safety performance when running in complex urban road traffic environments,such as low intelligence and poor comfort perfor-mance in the driving process.The real-time performance of vehicles and the comfort requirements of passengers in path planning and tracking control of unmanned vehicles have attracted more and more attentions.In this paper,in order to improve the real-time performance of the autonomous vehicle planning module and the comfort requirements of passengers that a local granular-based path planning method and tracking control based on multi-segment Bezier curve splicing and model predictive control theory are pro-posed.Especially,the maximum trajectory curvature satisfying ride comfort is regarded as an important constraint condition,and the corresponding curvature threshold is utilized to calculate the control points of Bezier curve.By using low-order interpolation curve splicing,the planning computation is reduced,and the real-time performance of planning is improved,com-pared with one-segment curve fitting method.Furthermore,the comfort performance of the planned path is reflected intuitively by the curvature information of the path.Finally,the effectiveness of the proposed control method is verified by the co-simulation platform built by MATLAB/Simulink and Carsim.The simulation results show that the path tracking effect of multi-segment Bezier curve fitting is better than that of high-order curve planning in terms of real-time performance and comfort.展开更多
To improve intelligent vehicle drive performance and avoid vehicle side-slip during target path tracking,a linearized four-wheel vehicle model is adopted as a predictive control model,and an intelligent ve-hicle targe...To improve intelligent vehicle drive performance and avoid vehicle side-slip during target path tracking,a linearized four-wheel vehicle model is adopted as a predictive control model,and an intelligent ve-hicle target path tracking method based on a competitive cooperative game is proposed.The design variables are divided into different strategic spaces owned by each player by calculating the affecting factors of the design variables with objective functions and fuzzy clustering.Based on the competitive cooperative game model,each game player takes its payoff as a mono-objective to optimize its own strategic space and obtain the best strategy to deal with others.The best strategies were combined into the game strategy set.Considering the front wheel angle and side slip angle increment constraint,tire side-slip angle,and tire side slip deflection dynamics,it took the path tracking state model was used as the objective,function and the calculation was validated by competitive cooperative game theory.The results demonstrated the effectiveness of the proposed algorithm.The experimental results show that this method can track an intelligent vehicle quickly and steadily and has good real-time per-formance.展开更多
To date unmanned aerial system(UAS)technologies have attracted more and more attention from countries in the world.Unmanned aerial vehicles(UAVs)play an important role in reconnaissance,surveillance,and target trackin...To date unmanned aerial system(UAS)technologies have attracted more and more attention from countries in the world.Unmanned aerial vehicles(UAVs)play an important role in reconnaissance,surveillance,and target tracking within military and civil fields.Here one briefly introduces the development of UAVs,and reviews its various subsystems including autopilot,ground station,mission planning and management subsystem,navigation system and so on.Furthermore,an overview is provided for advanced design methods of UAVs control system,including the linear feedback control,adaptive and nonlinear control,and intelligent control techniques.Finally,the future of UAVs flight control techniques is forecasted.展开更多
For the constant distance spacing policy,the existing researches of the string stability focus on the single-predecessor information framework(SPIF) and predecessor-successor information framework(PSIF).The resear...For the constant distance spacing policy,the existing researches of the string stability focus on the single-predecessor information framework(SPIF) and predecessor-successor information framework(PSIF).The research results demonstrated that the string stability could not be guaranteed with the SPIF,and then the PSIF was proposed to resolve this string instability.But the issue,whether the string stability can be guaranteed when applying the PSIF,is still controversial.Meanwhile,most of the previous researches on the string stability were conducted without consideration of the parasitic time delays and lags.In this paper,the practical longitudinal vehicle dynamics model is built with consideration of the parasitic time delays and lags existing in the actuators,sensors or the communication systems.Secondly,the detailed theoretical analysis of string stability in frequency domain is conducted to demonstrate that the classical linear control laws can not ensure the string stability when applying both the symmetrical PSIF(SPSIF) and asymmetrical PSIF(APSIF).Thirdly,a control law,which adds the position and velocity information of the leading vehicle,is proposed to guarantee string stability for small/medium platoon,and the other control law,which adds the acceleration information of the controlled vehicle,is proposed to guarantee string stability for large platoon as well as small/medium platoon.Finally,the comparative simulation is conducted to confirm the conducted analysis and the proposed control laws.The conducted research completes the means to analyze the string stability in frequency domain,provides the parameters' reference for the design and implementation of the practical automatic following controllers,and improves the reliability and stability of the platoon of automatic vehicles.展开更多
We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reco...We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.展开更多
S-surface control has proven to be an effective means for motion control of underwater autonomous vehicles(AUV).However there are still problems maintaining steady precision of course due to the constant need to adjus...S-surface control has proven to be an effective means for motion control of underwater autonomous vehicles(AUV).However there are still problems maintaining steady precision of course due to the constant need to adjust parameters,especially where there are disturbing currents.Thus an intelligent integral was introduced to improve precision.An expert S-surface control was developed to tune the parameters on-line,based on the expert system,it provides S-surface control according to practical experience and control knowledge.To prevent control output over-compensation,a fuzzy neural network was included to adjust the production rules to the knowledge base.Experiments were conducted on an AUV simulation platform,and the results show that the expert S-surface controller performs better than an S-surface controller in environments with currents,producing good steady precision of course in a robust way.展开更多
Internet of Things and artificial intelligence technology are the key elements of the intelligent construction of iron and steel production warehouse. This paper puts forward a whole set of intelligent scheme for bar ...Internet of Things and artificial intelligence technology are the key elements of the intelligent construction of iron and steel production warehouse. This paper puts forward a whole set of intelligent scheme for bar warehouse crane for the guidance of metallurgical process engineering, including cluster rapid self-awareness technology of the smart crane, precise self-executing technique of crane with rigid-flexible hybrid structure, multi-body system kinematics model of the smart crane sling and the swing characteristics model at different azimuth, antiswing control technology based on the optimization objective function, the vehicle model recognition system based on lidar, and the clustering crane dynamic scheduling method based on multi-agent reinforcement learning. The complete intelligent logistics system of the bar warehouse has changed the original operation mode of the warehouse area and realized the unmanned operation and intelligent scheduling of the crane,which is of great significance for improving the production efficiency, reducing the production cost, and improving the product quality.展开更多
The intelligent product of traditional fuel vehicles in electric vehicle region is the large screen of central control panel, which is the subversive innovative design of electric vehicles and the intelligent symbol u...The intelligent product of traditional fuel vehicles in electric vehicle region is the large screen of central control panel, which is the subversive innovative design of electric vehicles and the intelligent symbol under the Internet innovative thinking. Through the specific analysis of large screen innovative design, target customers, communication channel and communication effect of electric vehicle products, the comprehensive management of large screen communication of electric vehicles can be realized.展开更多
Along with the increasing number of vehicles, parking space becomes narrow gradually, safety parking puts forward higher requirements on the driver's driving technology. How to safely, quickly and accurately park the...Along with the increasing number of vehicles, parking space becomes narrow gradually, safety parking puts forward higher requirements on the driver's driving technology. How to safely, quickly and accurately park the vehiclo to parking space right? This paper presents an automatic parking scheme based on trajectory planning, which analyzing the mechanical model oftbe vehicle, establishing vehicle steering model and parking model, coming to the conclusion that it is the turning radius is independent of the vehicle speed at low speed. The Matlab simulation environment verifies the correctness and effectiveness of the proposed algorithm for parking. A class of the automatic parking problem of intelligent vehicles is solved.展开更多
基金the financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.
基金State Key Laboratory of Automotive Safety and Energy,Grant/Award Number:KFY2208National Natural Science Foundation of China,Grant/Award Numbers:U2013601,U20A20225+1 种基金Key Research and Development Plan of Anhui Province,Grant/Award Number:202004a05020058the Natural Science Foundation of Hefei,China(Grant No.2021032)。
文摘Disturbance observer-based control method has achieved good results in the carfollowing scenario of intelligent and connected vehicle(ICV).However,the gain of conventional extended disturbance observer(EDO)-based control method is usually set manually rather than adjusted adaptively according to real time traffic conditions,thus declining the car-following performance.To solve this problem,a car-following strategy of ICV using EDO adjusted by reinforcement learning is proposed.Different from the conventional method,the gain of proposed strategy can be adjusted by reinforcement learning to improve its estimation accuracy.Since the“equivalent disturbance”can be compensated by EDO to a great extent,the disturbance rejection ability of the carfollowing method will be improved significantly.Both Lyapunov approach and numerical simulations are carried out to verify the effectiveness of the proposed method.
基金Supported by Beijing Nova Program of Science and Technology(Grant No.Z191100001119087)Beijing Municipal Science&Technology Commission(Grant No.Z181100004618005 and Grant No.Z18111000460000)。
文摘The electrification of vehicle helps to improve its operation efficiency and safety.Due to fast development of network,sensors,as well as computing technology,it becomes realizable to have vehicles driving autonomously.To achieve autonomous driving,several steps,including environment perception,path-planning,and dynamic control,need to be done.However,vehicles equipped with on-board sensors still have limitations in acquiring necessary environmental data for optimal driving decisions.Intelligent and connected vehicles(ICV)cloud control system(CCS)has been introduced as a new concept as it is a potentially synthetic solution for high level automated driving to improve safety and optimize traffic flow in intelligent transportation.This paper systematically investigated the concept of cloud control system from cloud related applications on ICVs,and cloud control system architecture design,as well as its core technologies development.Based on the analysis,the challenges and suggestions on cloud control system development have been addressed.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10772152)
文摘In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent vehicle systems. Based on the dynamical model of vehicle, by applying Lyapunov function method, the control problem for lane keeping in the presence of parametric uncertainty is studied, the direct adaptive algorithm to compensate for parametric variations is proposed and the terminal sliding mode variable structure control laws are designed with look-ahead references systems. The stability of the system is investigated from the zero dynamics analysis. Simulation results show that convergence rates of the lateral displacement error, yaw angle error and slid angle are fast.
文摘Based on analysis and evaluation on the circular, cosine type, constant-speed offset type and ladder type lane change trajectory, this paper proposes an intelligent vehicle lane change trajectory model under multiple barriers, proposes its dynamic constraints in the light of the cellular automata theory, obtains the desired lane change trajectory using this method, and finally changes into a simple coefficient selection problem. Secondly, based on the quadratic optimal control theory, this paper proposes a state space analysis method of intelligent vehicle lateral control, and designs an optimal controller for lateral stability of H2 vehicles. The computer simulation results show that compared with other vehicle trajectory methods, the method in this paper is able to simply and rapidly describe the trajectory, and can describe the intelligent vehicle lane change trajectory under a variety of situations, wherein the controller is reliable and capable of fast convergence.
文摘Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem.
基金Supported by National Key R&D Program of China(Grant No.2018YFB1600500)Jiangsu Provincial Postgraduate Research&Practice Innovation Program of(Grant No.KYCX22_3673).
文摘To resolve the response delay and overshoot problems of intelligent vehicles facing emergency lane-changing due to proportional-integral-differential(PID)parameter variation,an active steering control method based on Convolutional Neural Network and PID(CNNPID)algorithm is constructed.First,a steering control model based on normal distribution probability function,steady constant radius steering,and instantaneous lane-change-based active for straight and curved roads is established.Second,based on the active steering control model,a three-dimensional constraint-based fifth-order polynomial equation lane-change path is designed to address the stability problem with supersaturation and sideslip due to emergency lane changing.In addition,a hierarchical CNNPID Controller is constructed which includes two layers to avoid collisions facing emergency lane changing,namely,the lane change path tracking PID control layer and the CNN control performance optimization layer.The scaled conjugate gradient backpropagation-based forward propagation control law is designed to optimize the PID control performance based on input parameters,and the elastic backpropagation-based module is adopted for weight correction.Finally,comparison studies and simulation/real vehicle test results are presented to demonstrate the effectiveness,significance,and advantages of the proposed controller.
基金supported by the National Natural Science Foundation of China(62003062)Chongqing Natural Science Foundation Project(Grant No.cstc2020jcyj-msxmX0803,cstc2020jcyj-msxmX0077)+1 种基金Chongqing Municipal Education Commission Scientific Research Project(Grant No.KJQN202100824)Chongqing Technology and Business University Postgraduate Innovative Scientific Research Project(Grant No.yjscxx2021-122-44).
文摘Unmanned vehicles are currently facing many difficulties and challenges in improving safety performance when running in complex urban road traffic environments,such as low intelligence and poor comfort perfor-mance in the driving process.The real-time performance of vehicles and the comfort requirements of passengers in path planning and tracking control of unmanned vehicles have attracted more and more attentions.In this paper,in order to improve the real-time performance of the autonomous vehicle planning module and the comfort requirements of passengers that a local granular-based path planning method and tracking control based on multi-segment Bezier curve splicing and model predictive control theory are pro-posed.Especially,the maximum trajectory curvature satisfying ride comfort is regarded as an important constraint condition,and the corresponding curvature threshold is utilized to calculate the control points of Bezier curve.By using low-order interpolation curve splicing,the planning computation is reduced,and the real-time performance of planning is improved,com-pared with one-segment curve fitting method.Furthermore,the comfort performance of the planned path is reflected intuitively by the curvature information of the path.Finally,the effectiveness of the proposed control method is verified by the co-simulation platform built by MATLAB/Simulink and Carsim.The simulation results show that the path tracking effect of multi-segment Bezier curve fitting is better than that of high-order curve planning in terms of real-time performance and comfort.
基金supported by The Natural Science Foundation of China(Grant No.51275002).
文摘To improve intelligent vehicle drive performance and avoid vehicle side-slip during target path tracking,a linearized four-wheel vehicle model is adopted as a predictive control model,and an intelligent ve-hicle target path tracking method based on a competitive cooperative game is proposed.The design variables are divided into different strategic spaces owned by each player by calculating the affecting factors of the design variables with objective functions and fuzzy clustering.Based on the competitive cooperative game model,each game player takes its payoff as a mono-objective to optimize its own strategic space and obtain the best strategy to deal with others.The best strategies were combined into the game strategy set.Considering the front wheel angle and side slip angle increment constraint,tire side-slip angle,and tire side slip deflection dynamics,it took the path tracking state model was used as the objective,function and the calculation was validated by competitive cooperative game theory.The results demonstrated the effectiveness of the proposed algorithm.The experimental results show that this method can track an intelligent vehicle quickly and steadily and has good real-time per-formance.
基金supported by the National Natural Science Foundation of China(No.61304223)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20123218120015)the Fundamental Research Funds for the Central Universities(No.NZ2015206)
文摘To date unmanned aerial system(UAS)technologies have attracted more and more attention from countries in the world.Unmanned aerial vehicles(UAVs)play an important role in reconnaissance,surveillance,and target tracking within military and civil fields.Here one briefly introduces the development of UAVs,and reviews its various subsystems including autopilot,ground station,mission planning and management subsystem,navigation system and so on.Furthermore,an overview is provided for advanced design methods of UAVs control system,including the linear feedback control,adaptive and nonlinear control,and intelligent control techniques.Finally,the future of UAVs flight control techniques is forecasted.
基金supported by National Natural Science Foundation of China(61425008,61333004,61273054)Top-Notch Young Talents Program of China,and Aeronautical Foundation of China(2015ZA51013)
基金supported by Doctoral Foundation of Ministry of Education of China (Grant No.20070006011)
文摘For the constant distance spacing policy,the existing researches of the string stability focus on the single-predecessor information framework(SPIF) and predecessor-successor information framework(PSIF).The research results demonstrated that the string stability could not be guaranteed with the SPIF,and then the PSIF was proposed to resolve this string instability.But the issue,whether the string stability can be guaranteed when applying the PSIF,is still controversial.Meanwhile,most of the previous researches on the string stability were conducted without consideration of the parasitic time delays and lags.In this paper,the practical longitudinal vehicle dynamics model is built with consideration of the parasitic time delays and lags existing in the actuators,sensors or the communication systems.Secondly,the detailed theoretical analysis of string stability in frequency domain is conducted to demonstrate that the classical linear control laws can not ensure the string stability when applying both the symmetrical PSIF(SPSIF) and asymmetrical PSIF(APSIF).Thirdly,a control law,which adds the position and velocity information of the leading vehicle,is proposed to guarantee string stability for small/medium platoon,and the other control law,which adds the acceleration information of the controlled vehicle,is proposed to guarantee string stability for large platoon as well as small/medium platoon.Finally,the comparative simulation is conducted to confirm the conducted analysis and the proposed control laws.The conducted research completes the means to analyze the string stability in frequency domain,provides the parameters' reference for the design and implementation of the practical automatic following controllers,and improves the reliability and stability of the platoon of automatic vehicles.
基金funding from the Australian Government,via grant AUSMURIB000001 associated with ONR MURI Grant N00014-19-1-2571。
文摘We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.
基金Supported by the National Natural Science Foundation of China under Grant No.50579007
文摘S-surface control has proven to be an effective means for motion control of underwater autonomous vehicles(AUV).However there are still problems maintaining steady precision of course due to the constant need to adjust parameters,especially where there are disturbing currents.Thus an intelligent integral was introduced to improve precision.An expert S-surface control was developed to tune the parameters on-line,based on the expert system,it provides S-surface control according to practical experience and control knowledge.To prevent control output over-compensation,a fuzzy neural network was included to adjust the production rules to the knowledge base.Experiments were conducted on an AUV simulation platform,and the results show that the expert S-surface controller performs better than an S-surface controller in environments with currents,producing good steady precision of course in a robust way.
基金financially supported by the National Key Research and Development Plan of China (No.2020YFB1713600)the National Natural Science Foundation of China (No.51975043)the Fundamental Research Funds for the Central Universities (Nos.FRF-TP-19002A3 and FRF-TP-20-105A1)。
文摘Internet of Things and artificial intelligence technology are the key elements of the intelligent construction of iron and steel production warehouse. This paper puts forward a whole set of intelligent scheme for bar warehouse crane for the guidance of metallurgical process engineering, including cluster rapid self-awareness technology of the smart crane, precise self-executing technique of crane with rigid-flexible hybrid structure, multi-body system kinematics model of the smart crane sling and the swing characteristics model at different azimuth, antiswing control technology based on the optimization objective function, the vehicle model recognition system based on lidar, and the clustering crane dynamic scheduling method based on multi-agent reinforcement learning. The complete intelligent logistics system of the bar warehouse has changed the original operation mode of the warehouse area and realized the unmanned operation and intelligent scheduling of the crane,which is of great significance for improving the production efficiency, reducing the production cost, and improving the product quality.
文摘The intelligent product of traditional fuel vehicles in electric vehicle region is the large screen of central control panel, which is the subversive innovative design of electric vehicles and the intelligent symbol under the Internet innovative thinking. Through the specific analysis of large screen innovative design, target customers, communication channel and communication effect of electric vehicle products, the comprehensive management of large screen communication of electric vehicles can be realized.
基金supported by the National Natural Science Foundation of China (61035004, 61273213, 61300006, 61305055, 90920305, 61203366, 91420202)the National Hi-Tech Research and Development Program of China (2015AA015401)+3 种基金the National Basic Research Program of China (2016YFB0100906, 2016YFB0100903)the Junior Fellowships for Advanced Innovation Think-Tank Program of China Association for Science and Technology (DXB-ZKQN-2017-035)the Project Funded by China Postdoctoral Science Foundationthe Beijing Municipal Science and Technology Commission Special Major (D171100005017002)
文摘Along with the increasing number of vehicles, parking space becomes narrow gradually, safety parking puts forward higher requirements on the driver's driving technology. How to safely, quickly and accurately park the vehiclo to parking space right? This paper presents an automatic parking scheme based on trajectory planning, which analyzing the mechanical model oftbe vehicle, establishing vehicle steering model and parking model, coming to the conclusion that it is the turning radius is independent of the vehicle speed at low speed. The Matlab simulation environment verifies the correctness and effectiveness of the proposed algorithm for parking. A class of the automatic parking problem of intelligent vehicles is solved.