To improve the ride comfort and safety of a traditional adaptive cruise control(ACC)system when the preceding vehicle changes lanes,it proposes a target vehicle selection algorithm based on the prediction of the lane-...To improve the ride comfort and safety of a traditional adaptive cruise control(ACC)system when the preceding vehicle changes lanes,it proposes a target vehicle selection algorithm based on the prediction of the lane-changing intention for the preceding vehicle.First,the Next Generation Simulation dataset is used to train a lane-changing intention prediction algorithm based on a sliding window support vector machine,and the lane-changing intention of the preceding vehicle in the current lane is identified by lateral position offset.Second,according to the lane-changing intention and collision threat of the preceding vehicle,the target vehicle selection algorithm is studied under three different conditions:safe lane-changing,dangerous lane-changing,and lane-changing cancellation.Finally,the effectiveness of the proposed algorithm is verified in a co-simulation platform.The simulation results show that the target vehicle selection algorithm can ensure the smooth transfer of the target vehicle and effectively reduce the longitudinal acceleration fluctuation of the subject vehicle when the preceding vehicle changes lanes safely or cancels their lane change maneuver.In the case of a dangerous lane change,the target vehicle selection algorithm proposed in this paper can respond more rapidly to a dangerous lane change than the target vehicle selection method of the traditional ACC system;thus,it can effectively avoid collisions and improve the safety of the subject vehicle.展开更多
In order to increase the accuracy of microscopic traffic flow simulation,two acceleration models are presented to simulate car-following behaviors of the lane-changing vehicle and following putative vehicle during the...In order to increase the accuracy of microscopic traffic flow simulation,two acceleration models are presented to simulate car-following behaviors of the lane-changing vehicle and following putative vehicle during the discretionary lanechanging preparation( DLCP) process, respectively. The proposed acceleration models can reflect vehicle interaction characteristics. Samples used for describing the starting point and the ending point of DLCP are extracted from a real NGSIM vehicle trajectory data set. The acceleration model for a lanechanging vehicle is supposed to be a linear acceleration model.The acceleration model for the following putative vehicle is constructed by referring to the optimal velocity model,in which optimal velocity is defined as a linear function of the velocity of putative leading vehicle. Similar calibration,a hypothesis test and parameter sensitivity analysis were conducted on the acceleration model of the lane-changing vehicle and following putative vehicle,respectively. The validation results of the two proposed models suggest that the training and testing errors are acceptable compared with similar works on calibrations for car following models. The parameter sensitivity analysis shows that the subtle observed error does not lead to severe variations of car-following behaviors of the lane-changing vehicle and following putative vehicle.展开更多
The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take ...The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take advantage of these developments.Here we consider the case of many vehicles forming a queue,i.e.,vehicles traveling at a predetermined speed and distance apart.While the majority of existing studies on this subject have focused on the influence of the longitudinal vehicle spacing,vehicle speed,and the number of vehicles on aerodynamic drag and fuel economy,this study considers the lateral offset distance of the vehicle queue.The group fuel consumption savings rate is calculated and analyzed.As also demonstrated by experimental results,some aerodynamic benefits exist.Moreover,the fuel consumption saving rate of the vehicle queue decreases as the lateral offset distance increases.展开更多
This paper presents a constrained control strategy for the hypersonic vehicle with actuator amplitude,rate constraints and aerodynamic uncertainties.First,a vehicle-actuator control model is derived in consideration o...This paper presents a constrained control strategy for the hypersonic vehicle with actuator amplitude,rate constraints and aerodynamic uncertainties.First,a vehicle-actuator control model is derived in consideration of actuator dynamics properties explicitly.Second,a nonlinear disturbance observer is designed to estimate the aerodynamic uncertainties,and then an adaptive backstepping control technique is adopted with a modified first-order-filter to eliminate the“explosion of terms”problem.Next,for handling the actuator amplitude and rate constraints,a novel auxiliary compensation system is constructed to generate quickly compensating signals to ensure tracking performance of command signal.By the Lyapunov stability proof,the proposed control scheme can enssure that the tracking errors converge to an arbitrarily small neighborhood around zero when the actuator constraints and aerodynamic uncertainties exist.Finally,numerical simulations are implemented to illustrate the effectiveness of the proposed control method.展开更多
To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensati...To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensation method to avoid category II PIOs is investigated. Firstly, the AW compensation method originally used for controlling input magnitude limited system is introduced, then this method is extended for controlling input rate-limiting system through a circle criterion theorem. Secondly, the establishment of the AW compensator is transformed into the solving of linear matrix inequalities. Finally, an AW compensator establishment algorithm for the closed-loop pilot-vehicle system with the rate-limiting actuator is obtained. The effectiveness of the AW compensation method to avoid category II PIOs is validated by time-domain simulations,and compared with rate-limited feedback(RLF) command rate compensation method. The results show that the AW compensation method can effectively suppress category II PIOs and maintain the nominal performance when the closed-loop pilot-vehicle system is normal. Unlike the command rate compensator which works upon system uninterruptedly, the AW compensation method affects the closed-loop pilot-vehicle system only when the rate-limiting of actuator is activated, so it is a novel PIO avoidance method.展开更多
The authors designed three different front profiles for supercavitating vehicles based on cavity theory and the Granville streamlined equation are designed. Experiments were done using these front profiles in the Nort...The authors designed three different front profiles for supercavitating vehicles based on cavity theory and the Granville streamlined equation are designed. Experiments were done using these front profiles in the Northwestern Polytechnical University high-speed water tunnel. The experiments indicated that the critical volume of gas required for supercavitation is affected by the axial distribution of the front-end's slope. The experimental data showed critical gas flow rates required for the three designs were less than rood-l, with the greatest decrease 24%. The experimental results also showed the supercavitation generation speeds of the models were faster than mod-1 by up to 32.4%. This verifies that the front profile of a supercaviting vehicle effects supercavity generation speed and critical gas flow rates. The smaller the changes in axial distribution of pressure, the higher the supercavity generation speed. The smaller the changes in curvature distribution of axial, the smaller the critical gas flow rates.展开更多
A prescribed performance neural controller to guarantee tracking quality is addressed for the near space kinetic kill vehicle (NSKKV) to meet the state constraints caused by side window detection. Different from the t...A prescribed performance neural controller to guarantee tracking quality is addressed for the near space kinetic kill vehicle (NSKKV) to meet the state constraints caused by side window detection. Different from the traditional prescribed performance control in which the shape of the performance function is constant, this paper exploits new performance functions which can change the shape of their function according to different symbols of initial errors and can ensure the error convergence with a small overshoot. The neural backstepping control and the minimal learning parameters (MLP) technology are employed for exploring a prescribed performance controller (PPC) that provides robust tracking attitude reference trajectories. The highlight is that the transient performance of tracking errors is satisfactory and the computational load of neural approximation is low. The pseudo rate (PSR) modulator is used to shape the continuous control command to pulse or on-off signals to meet the requirements of the thruster. Numerical simulations show that the proposed method can achieve state constraints, pseudo-linear operation and high accuracy.展开更多
As being an effective real-time method of monitoring vehicle emissions on-road, a remote sensing system based on the tunable diode laser (TDL) technology was presented, and the key technologies were discussed. A fie...As being an effective real-time method of monitoring vehicle emissions on-road, a remote sensing system based on the tunable diode laser (TDL) technology was presented, and the key technologies were discussed. A field test in Guangzhou(Guangdong, China) was performed and was found that the factors, such as slope, instantaneous speed and acceleration, had significant influence on the detectable rate of the system. Based on the results, the proposal choice of testing site was presented.展开更多
In order to increase the availability of the part-time idle bus rapid transit lane(BRT-lane),a time division multiplexing(TDM) method to share BRT-lane with the vehicles besides BRT buses is proposed based on vehicle-...In order to increase the availability of the part-time idle bus rapid transit lane(BRT-lane),a time division multiplexing(TDM) method to share BRT-lane with the vehicles besides BRT buses is proposed based on vehicle-road collaboration. The TDM control strategy is established under the circumstance of vehicle-infrastructure integration(VII). The algorithm is given to forecast the segmented BRT travel time. According to the real time traffic information,a comprehensive model is given to estimate the vehicles' lane-changing time from/to the BRTlane to/from its neighbor lane and determine the timing sequence for vehicles collaboration. Finally,the experiment demonstrates that the predicted value of the travel time and lane-changing time is much close to the true value. The control strategy of the vehicles collaboration could promise the non-BRT vehicles to share BRT-lane without disturbing BRT's priority.展开更多
Motor Vehicle emission simulator(MOVES)model was localized by changing the base emission rates in MySQL database of the model,and using the actual measured data for private cars in Shenzhen City,China.The performances...Motor Vehicle emission simulator(MOVES)model was localized by changing the base emission rates in MySQL database of the model,and using the actual measured data for private cars in Shenzhen City,China.The performances of localized MOVES model and non-localized MOVES model were evaluated by comparing the predicted emission factors to the measured ones.The results showed that by localization of the base emission rates,the prediction accuracy of the localized MOVES model for hydrocarbon(HC)and nitrogen oxides(NO x)was significantly improved.The accuracy of the localized MOVES model simulations in the Opmode increased by 86%,88%and 71%for HC,76%,42%and 72%for NO x on arterial roads,expressways and highways.For carbon monoxide(CO),however,the simulation performance based on the average velocity mode on expressways and highways became poor after localization,with the decrease of 28%and 8%respectively.Overall,by the localization of the base emission rates,the relative errors of the simulated emission factors of HC,CO and NO x of private cars were less than 37%.展开更多
Factors contributing to ventilation quantity of the vehicle are ventilation modes, cabin characteristics and vehicle speeds. CO2 levels were investigated under different speeds and ventilation modes. Four modes were s...Factors contributing to ventilation quantity of the vehicle are ventilation modes, cabin characteristics and vehicle speeds. CO2 levels were investigated under different speeds and ventilation modes. Four modes were selected: A: vent closed and fan shut, B: vent closed and fan started, C: vent opened and fan shut, D: vent opened and fan started. In vent closed modes, CO2 levels reached several thousands of ppm in few minutes at any speeds. For mode C, CO2 levels exceeded the guideline at low speeds 50 km/h, while it reduced below one at higher speeds 80 km/h. Fan has no significant impact on ventilation during vent closed. The ventilation efficiency in each mode increased with the speed raising. To determine the ventilation rate of running vehicle, the experiment was implemented by using CO2 emitted from driver and passengers as tracer gas. Ventilation rate for the different modes and speeds were calculated.展开更多
The objective of the paper is to compute the optimal burn-out conditions and control requirements that would result in maximum down-range/cross-range performance of a waverider type hypersonic boost-glide(HBG) vehicle...The objective of the paper is to compute the optimal burn-out conditions and control requirements that would result in maximum down-range/cross-range performance of a waverider type hypersonic boost-glide(HBG) vehicle within the medium and intermediate ranges,and compare its performance with the performances of wing-body and lifting-body vehicles vis-a-vis the g-load and the integrated heat load experienced by vehicles for the medium-sized launch vehicle under study.Trajectory optimization studies were carried out by considering the heat rate and dynamic pressure constraints.The trajectory optimization problem is modeled as a nonlinear,multiphase,constraint optimal control problem and is solved using a hp-adaptive pseudospectral method.Detail modeling aspects of mass,aerodynamics and aerothermodynamics for the launch and glide vehicles have been discussed.It was found that the optimal burn-out angles for waverider and wing-body configurations are approximately 5° and 14.8°,respectively,for maximum down-range performance under the constraint heat rate environment.The down-range and cross-range performance of HBG waverider configuration is nearly 1.3 and 2 times that of wing-body configuration respectively.The integrated heat load experienced by the HBG waverider was found to be approximately an order of magnitude higher than that of a lifting-body configuration and 5 times that of a wing-body configuration.The footprints and corresponding heat loads and control requirements for the three types of glide vehicles are discussed for the medium range launch vehicle under consideration.展开更多
Accidents involving heavy vehicles might show high mortality rates, so it is important to study ways of reducing them. in this research, it was carried out an analysis of the regulations concerning heavy vehicle braki...Accidents involving heavy vehicles might show high mortality rates, so it is important to study ways of reducing them. in this research, it was carried out an analysis of the regulations concerning heavy vehicle braking systems in Costa Rica. And some opportunities of improving road safety regarding heavy vehicle braking systems were identified. The analysis showed several regulatory weaknesses, among which were found: lack of regulatory controls of vehicles importation, the friction coefficient associated to maximum braking distance is not specified, the use of technologies that guarantee a stable braking is not compulsory, the measuring procedure of braking efficacy in vehicle inspection shows some deficiencies, and little controls have been established on maintenance practices of heavy vehicle fleets.展开更多
Purpose–This study aims to propose an enhanced eco-driving strategy based on reinforcement learning(RL)to alleviate the mileage anxiety of electric vehicles(EVs)in the connected environment.Design/methodology/approac...Purpose–This study aims to propose an enhanced eco-driving strategy based on reinforcement learning(RL)to alleviate the mileage anxiety of electric vehicles(EVs)in the connected environment.Design/methodology/approach–In this paper,an enhanced eco-driving control strategy based on an advanced RL algorithm in hybrid action space(EEDC-HRL)is proposed for connected EVs.The EEDC-HRL simultaneously controls longitudinal velocity and lateral lane-changing maneuvers to achieve more potential eco-driving.Moreover,this study redesigns an all-purpose and efficient-training reward function with the aim to achieve energy-saving on the premise of ensuring other driving performance.Findings–To illustrate the performance for the EEDC-HRL,the controlled EV was trained and tested in various traffic flow states.The experimental results demonstrate that the proposed technique can effectively improve energy efficiency,without sacrificing travel efficiency,comfort,safety and lane-changing performance in different traffic flow states.Originality/value–In light of the aforementioned discussion,the contributions of this paper are two-fold.An enhanced eco-driving strategy based an advanced RL algorithm in hybrid action space(EEDC-HRL)is proposed to jointly optimize longitudinal velocity and lateral lane-changing for connected EVs.A full-scale reward function consisting of multiple sub-rewards with a safety control constraint is redesigned to achieve eco-driving while ensuring other driving performance.展开更多
The dependency of the steady-state yaw rate model on vehicle weight and its distribution is studied in this paper. A speed-dependent adjustment of the yaw rate model is proposed to reduce the yaw rate estimation error...The dependency of the steady-state yaw rate model on vehicle weight and its distribution is studied in this paper. A speed-dependent adjustment of the yaw rate model is proposed to reduce the yaw rate estimation error. This new methodology allows the calibration engineer to minimize the yaw rate estimation error caused by the different weight conditions without going through the calibration process multiple times. It is expected that this modified yaw rate model will improve the performance of Electronic Stability Control (ESC) systems such as response time and robustness.展开更多
Drivers are not far-sighted when they execute lane-changing manipulation.To address this issue,this study proposes a rule to improve vehicles'lane-changing decisions with accurate information of surrounding vehicl...Drivers are not far-sighted when they execute lane-changing manipulation.To address this issue,this study proposes a rule to improve vehicles'lane-changing decisions with accurate information of surrounding vehicles(e.g.time headway)-More specifically,connected and autonomous vehicles(CAVs)change lanes in advance if they find severer flow reducing in the lanes,while CAVs should maintain the car-following state if the variations of traffc flow in all lanes have a similar trend.To ilustrate the idea,this study frst calibrates two classic car-following models and a lane-changing model,and then conducts numerical simulations to illustrate the short-sighted decision of drivers.The study incorporates the idea into a lane-changing decision rule by changing the lane-changing model's pa-rameter,and conducts numerical tests to evaluate the effectiveness of the lane-changing decision rule in a multi-lane highway with a bottleneck.The results of this study indicate that the new lane-changing decision rule can substantially improve the throughput of the traffic flow,especially when the inflow exceeds the remaining capacity of the road.The lane-changing rule and results can bring insights into the control of CAVs,as well as the driver assistance system in connected vehicles.展开更多
基金Supported by National Key Research and Development Program(Grant No.2017YFB0102601)National Natural Science Foundation of China(Grant Nos.51775236,U1564214).
文摘To improve the ride comfort and safety of a traditional adaptive cruise control(ACC)system when the preceding vehicle changes lanes,it proposes a target vehicle selection algorithm based on the prediction of the lane-changing intention for the preceding vehicle.First,the Next Generation Simulation dataset is used to train a lane-changing intention prediction algorithm based on a sliding window support vector machine,and the lane-changing intention of the preceding vehicle in the current lane is identified by lateral position offset.Second,according to the lane-changing intention and collision threat of the preceding vehicle,the target vehicle selection algorithm is studied under three different conditions:safe lane-changing,dangerous lane-changing,and lane-changing cancellation.Finally,the effectiveness of the proposed algorithm is verified in a co-simulation platform.The simulation results show that the target vehicle selection algorithm can ensure the smooth transfer of the target vehicle and effectively reduce the longitudinal acceleration fluctuation of the subject vehicle when the preceding vehicle changes lanes safely or cancels their lane change maneuver.In the case of a dangerous lane change,the target vehicle selection algorithm proposed in this paper can respond more rapidly to a dangerous lane change than the target vehicle selection method of the traditional ACC system;thus,it can effectively avoid collisions and improve the safety of the subject vehicle.
基金The National Basic Research Program of China(No.2012CB725405)the National Natural Science Foundation of China(No.51308115)+1 种基金the Science and Technology Demonstration Project of Ministry of Transport of China(No.2015364X16030)Fundamental Research Funds for the Central Universities,the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYLX15_0153)
文摘In order to increase the accuracy of microscopic traffic flow simulation,two acceleration models are presented to simulate car-following behaviors of the lane-changing vehicle and following putative vehicle during the discretionary lanechanging preparation( DLCP) process, respectively. The proposed acceleration models can reflect vehicle interaction characteristics. Samples used for describing the starting point and the ending point of DLCP are extracted from a real NGSIM vehicle trajectory data set. The acceleration model for a lanechanging vehicle is supposed to be a linear acceleration model.The acceleration model for the following putative vehicle is constructed by referring to the optimal velocity model,in which optimal velocity is defined as a linear function of the velocity of putative leading vehicle. Similar calibration,a hypothesis test and parameter sensitivity analysis were conducted on the acceleration model of the lane-changing vehicle and following putative vehicle,respectively. The validation results of the two proposed models suggest that the training and testing errors are acceptable compared with similar works on calibrations for car following models. The parameter sensitivity analysis shows that the subtle observed error does not lead to severe variations of car-following behaviors of the lane-changing vehicle and following putative vehicle.
基金This study was financially supported by the National Natural Science Foundation of China(52072156)the Postdoctoral Foundation of China(2020M682269).
文摘The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take advantage of these developments.Here we consider the case of many vehicles forming a queue,i.e.,vehicles traveling at a predetermined speed and distance apart.While the majority of existing studies on this subject have focused on the influence of the longitudinal vehicle spacing,vehicle speed,and the number of vehicles on aerodynamic drag and fuel economy,this study considers the lateral offset distance of the vehicle queue.The group fuel consumption savings rate is calculated and analyzed.As also demonstrated by experimental results,some aerodynamic benefits exist.Moreover,the fuel consumption saving rate of the vehicle queue decreases as the lateral offset distance increases.
基金supported by the Na- tional Natural Science Foundation of China (No.61304099)the Foundation of Graduate Innovation Center in NUAA (No. kfjj20171505)the Postgraduate Research & Practice In- novation Program of Jiangsu Province (No.KYCX18_0304)
文摘This paper presents a constrained control strategy for the hypersonic vehicle with actuator amplitude,rate constraints and aerodynamic uncertainties.First,a vehicle-actuator control model is derived in consideration of actuator dynamics properties explicitly.Second,a nonlinear disturbance observer is designed to estimate the aerodynamic uncertainties,and then an adaptive backstepping control technique is adopted with a modified first-order-filter to eliminate the“explosion of terms”problem.Next,for handling the actuator amplitude and rate constraints,a novel auxiliary compensation system is constructed to generate quickly compensating signals to ensure tracking performance of command signal.By the Lyapunov stability proof,the proposed control scheme can enssure that the tracking errors converge to an arbitrarily small neighborhood around zero when the actuator constraints and aerodynamic uncertainties exist.Finally,numerical simulations are implemented to illustrate the effectiveness of the proposed control method.
基金supported by the National Basic Research Program(973Program)(2015CB755805)the National Natural Science Foundation of China(61374145)
文摘To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensation method to avoid category II PIOs is investigated. Firstly, the AW compensation method originally used for controlling input magnitude limited system is introduced, then this method is extended for controlling input rate-limiting system through a circle criterion theorem. Secondly, the establishment of the AW compensator is transformed into the solving of linear matrix inequalities. Finally, an AW compensator establishment algorithm for the closed-loop pilot-vehicle system with the rate-limiting actuator is obtained. The effectiveness of the AW compensation method to avoid category II PIOs is validated by time-domain simulations,and compared with rate-limited feedback(RLF) command rate compensation method. The results show that the AW compensation method can effectively suppress category II PIOs and maintain the nominal performance when the closed-loop pilot-vehicle system is normal. Unlike the command rate compensator which works upon system uninterruptedly, the AW compensation method affects the closed-loop pilot-vehicle system only when the rate-limiting of actuator is activated, so it is a novel PIO avoidance method.
文摘The authors designed three different front profiles for supercavitating vehicles based on cavity theory and the Granville streamlined equation are designed. Experiments were done using these front profiles in the Northwestern Polytechnical University high-speed water tunnel. The experiments indicated that the critical volume of gas required for supercavitation is affected by the axial distribution of the front-end's slope. The experimental data showed critical gas flow rates required for the three designs were less than rood-l, with the greatest decrease 24%. The experimental results also showed the supercavitation generation speeds of the models were faster than mod-1 by up to 32.4%. This verifies that the front profile of a supercaviting vehicle effects supercavity generation speed and critical gas flow rates. The smaller the changes in axial distribution of pressure, the higher the supercavity generation speed. The smaller the changes in curvature distribution of axial, the smaller the critical gas flow rates.
基金supported by the National Natural Science Foundation of China(61773398 61703421)
文摘A prescribed performance neural controller to guarantee tracking quality is addressed for the near space kinetic kill vehicle (NSKKV) to meet the state constraints caused by side window detection. Different from the traditional prescribed performance control in which the shape of the performance function is constant, this paper exploits new performance functions which can change the shape of their function according to different symbols of initial errors and can ensure the error convergence with a small overshoot. The neural backstepping control and the minimal learning parameters (MLP) technology are employed for exploring a prescribed performance controller (PPC) that provides robust tracking attitude reference trajectories. The highlight is that the transient performance of tracking errors is satisfactory and the computational load of neural approximation is low. The pseudo rate (PSR) modulator is used to shape the continuous control command to pulse or on-off signals to meet the requirements of the thruster. Numerical simulations show that the proposed method can achieve state constraints, pseudo-linear operation and high accuracy.
文摘As being an effective real-time method of monitoring vehicle emissions on-road, a remote sensing system based on the tunable diode laser (TDL) technology was presented, and the key technologies were discussed. A field test in Guangzhou(Guangdong, China) was performed and was found that the factors, such as slope, instantaneous speed and acceleration, had significant influence on the detectable rate of the system. Based on the results, the proposal choice of testing site was presented.
基金supported by National Natural Science Foundation of China(No.61174176)Zhejiang Planning Project of Science and Technology(No.2013C33086)
文摘In order to increase the availability of the part-time idle bus rapid transit lane(BRT-lane),a time division multiplexing(TDM) method to share BRT-lane with the vehicles besides BRT buses is proposed based on vehicle-road collaboration. The TDM control strategy is established under the circumstance of vehicle-infrastructure integration(VII). The algorithm is given to forecast the segmented BRT travel time. According to the real time traffic information,a comprehensive model is given to estimate the vehicles' lane-changing time from/to the BRTlane to/from its neighbor lane and determine the timing sequence for vehicles collaboration. Finally,the experiment demonstrates that the predicted value of the travel time and lane-changing time is much close to the true value. The control strategy of the vehicles collaboration could promise the non-BRT vehicles to share BRT-lane without disturbing BRT's priority.
基金National Natural Science Foundation of China(No.21307022)Research and Development of Science and Technology in Shenzhen,China(Nos.JCYJ20150625142543472,ZDSYS201603301417588,JCYJ20120613150606279)Shenzhen Urban Planning and Land Development Research Center,China(No.2016FY0013-1523)
文摘Motor Vehicle emission simulator(MOVES)model was localized by changing the base emission rates in MySQL database of the model,and using the actual measured data for private cars in Shenzhen City,China.The performances of localized MOVES model and non-localized MOVES model were evaluated by comparing the predicted emission factors to the measured ones.The results showed that by localization of the base emission rates,the prediction accuracy of the localized MOVES model for hydrocarbon(HC)and nitrogen oxides(NO x)was significantly improved.The accuracy of the localized MOVES model simulations in the Opmode increased by 86%,88%and 71%for HC,76%,42%and 72%for NO x on arterial roads,expressways and highways.For carbon monoxide(CO),however,the simulation performance based on the average velocity mode on expressways and highways became poor after localization,with the decrease of 28%and 8%respectively.Overall,by the localization of the base emission rates,the relative errors of the simulated emission factors of HC,CO and NO x of private cars were less than 37%.
文摘Factors contributing to ventilation quantity of the vehicle are ventilation modes, cabin characteristics and vehicle speeds. CO2 levels were investigated under different speeds and ventilation modes. Four modes were selected: A: vent closed and fan shut, B: vent closed and fan started, C: vent opened and fan shut, D: vent opened and fan started. In vent closed modes, CO2 levels reached several thousands of ppm in few minutes at any speeds. For mode C, CO2 levels exceeded the guideline at low speeds 50 km/h, while it reduced below one at higher speeds 80 km/h. Fan has no significant impact on ventilation during vent closed. The ventilation efficiency in each mode increased with the speed raising. To determine the ventilation rate of running vehicle, the experiment was implemented by using CO2 emitted from driver and passengers as tracer gas. Ventilation rate for the different modes and speeds were calculated.
基金the Chinese Scholarship Council for supporting the research
文摘The objective of the paper is to compute the optimal burn-out conditions and control requirements that would result in maximum down-range/cross-range performance of a waverider type hypersonic boost-glide(HBG) vehicle within the medium and intermediate ranges,and compare its performance with the performances of wing-body and lifting-body vehicles vis-a-vis the g-load and the integrated heat load experienced by vehicles for the medium-sized launch vehicle under study.Trajectory optimization studies were carried out by considering the heat rate and dynamic pressure constraints.The trajectory optimization problem is modeled as a nonlinear,multiphase,constraint optimal control problem and is solved using a hp-adaptive pseudospectral method.Detail modeling aspects of mass,aerodynamics and aerothermodynamics for the launch and glide vehicles have been discussed.It was found that the optimal burn-out angles for waverider and wing-body configurations are approximately 5° and 14.8°,respectively,for maximum down-range performance under the constraint heat rate environment.The down-range and cross-range performance of HBG waverider configuration is nearly 1.3 and 2 times that of wing-body configuration respectively.The integrated heat load experienced by the HBG waverider was found to be approximately an order of magnitude higher than that of a lifting-body configuration and 5 times that of a wing-body configuration.The footprints and corresponding heat loads and control requirements for the three types of glide vehicles are discussed for the medium range launch vehicle under consideration.
文摘Accidents involving heavy vehicles might show high mortality rates, so it is important to study ways of reducing them. in this research, it was carried out an analysis of the regulations concerning heavy vehicle braking systems in Costa Rica. And some opportunities of improving road safety regarding heavy vehicle braking systems were identified. The analysis showed several regulatory weaknesses, among which were found: lack of regulatory controls of vehicles importation, the friction coefficient associated to maximum braking distance is not specified, the use of technologies that guarantee a stable braking is not compulsory, the measuring procedure of braking efficacy in vehicle inspection shows some deficiencies, and little controls have been established on maintenance practices of heavy vehicle fleets.
基金China Automobile Industry Innovation and Development Joint Fund(U1864206).
文摘Purpose–This study aims to propose an enhanced eco-driving strategy based on reinforcement learning(RL)to alleviate the mileage anxiety of electric vehicles(EVs)in the connected environment.Design/methodology/approach–In this paper,an enhanced eco-driving control strategy based on an advanced RL algorithm in hybrid action space(EEDC-HRL)is proposed for connected EVs.The EEDC-HRL simultaneously controls longitudinal velocity and lateral lane-changing maneuvers to achieve more potential eco-driving.Moreover,this study redesigns an all-purpose and efficient-training reward function with the aim to achieve energy-saving on the premise of ensuring other driving performance.Findings–To illustrate the performance for the EEDC-HRL,the controlled EV was trained and tested in various traffic flow states.The experimental results demonstrate that the proposed technique can effectively improve energy efficiency,without sacrificing travel efficiency,comfort,safety and lane-changing performance in different traffic flow states.Originality/value–In light of the aforementioned discussion,the contributions of this paper are two-fold.An enhanced eco-driving strategy based an advanced RL algorithm in hybrid action space(EEDC-HRL)is proposed to jointly optimize longitudinal velocity and lateral lane-changing for connected EVs.A full-scale reward function consisting of multiple sub-rewards with a safety control constraint is redesigned to achieve eco-driving while ensuring other driving performance.
文摘The dependency of the steady-state yaw rate model on vehicle weight and its distribution is studied in this paper. A speed-dependent adjustment of the yaw rate model is proposed to reduce the yaw rate estimation error. This new methodology allows the calibration engineer to minimize the yaw rate estimation error caused by the different weight conditions without going through the calibration process multiple times. It is expected that this modified yaw rate model will improve the performance of Electronic Stability Control (ESC) systems such as response time and robustness.
基金This work was supported by the National Natural Science Foundation of China(Grants No.72271248,71801227,72201149)the Nation Key Research and Develop-ment Program of China(Grant No.2020YFB1600400)+1 种基金the Higher-end Think-Tank Project of Central South University(Grant No.2022znzk07)the China Postdoctoral Science Foundation(Grant No.2022M711818).
文摘Drivers are not far-sighted when they execute lane-changing manipulation.To address this issue,this study proposes a rule to improve vehicles'lane-changing decisions with accurate information of surrounding vehicles(e.g.time headway)-More specifically,connected and autonomous vehicles(CAVs)change lanes in advance if they find severer flow reducing in the lanes,while CAVs should maintain the car-following state if the variations of traffc flow in all lanes have a similar trend.To ilustrate the idea,this study frst calibrates two classic car-following models and a lane-changing model,and then conducts numerical simulations to illustrate the short-sighted decision of drivers.The study incorporates the idea into a lane-changing decision rule by changing the lane-changing model's pa-rameter,and conducts numerical tests to evaluate the effectiveness of the lane-changing decision rule in a multi-lane highway with a bottleneck.The results of this study indicate that the new lane-changing decision rule can substantially improve the throughput of the traffic flow,especially when the inflow exceeds the remaining capacity of the road.The lane-changing rule and results can bring insights into the control of CAVs,as well as the driver assistance system in connected vehicles.