期刊文献+
共找到1,308篇文章
< 1 2 66 >
每页显示 20 50 100
3D Road Network Modeling and Road Structure Recognition in Internet of Vehicles
1
作者 Dun Cao Jia Ru +3 位作者 Jian Qin Amr Tolba Jin Wang Min Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1365-1384,共20页
Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transp... Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety. 展开更多
关键词 Internet of vehicles road networks 3D road model structure recognition GIS
下载PDF
Adaptive Multi-Feature Fusion for Vehicle Micro-Motor Noise Recognition Considering Auditory Perception 被引量:1
2
作者 Ting Zhao Weiping Ding +1 位作者 Haibo Huang Yudong Wu 《Sound & Vibration》 EI 2023年第1期133-153,共21页
The deployment of vehicle micro-motors has witnessed an expansion owing to the progression in electrification and intelligent technologies.However,some micro-motors may exhibit design deficiencies,component wear,assem... The deployment of vehicle micro-motors has witnessed an expansion owing to the progression in electrification and intelligent technologies.However,some micro-motors may exhibit design deficiencies,component wear,assembly errors,and other imperfections that may arise during the design or manufacturing phases.Conse-quently,these micro-motors might generate anomalous noises during their operation,consequently exerting a substantial adverse influence on the overall comfort of drivers and passengers.Automobile micro-motors exhibit a diverse array of structural variations,consequently leading to the manifestation of a multitude of distinctive auditory irregularities.To address the identification of diverse forms of abnormal noise,this research presents a novel approach rooted in the utilization of vibro-acoustic fusion-convolutional neural network(VAF-CNN).This method entails the deployment of distinct network branches,each serving to capture disparate features from the multi-sensor data,all the while considering the auditory perception traits inherent in the human auditory sys-tem.The intermediary layer integrates the concept of adaptive weighting of multi-sensor features,thus affording a calibration mechanism for the features hailing from multiple sensors,thereby enabling a further refinement of features within the branch network.For optimal model efficacy,a feature fusion mechanism is implemented in the concluding layer.To substantiate the efficacy of the proposed approach,this paper initially employs an augmented data methodology inspired by modified SpecAugment,applied to the dataset of abnormal noise sam-ples,encompassing scenarios both with and without in-vehicle interior noise.This serves to mitigate the issue of limited sample availability.Subsequent comparative evaluations are executed,contrasting the performance of the model founded upon single-sensor data against other feature fusion models reliant on multi-sensor data.The experimental results substantiate that the suggested methodology yields heightened recognition accuracy and greater resilience against interference.Moreover,it holds notable practical significance in the engineering domain,as it furnishes valuable support for the targeted management of noise emanating from vehicle micro-motors. 展开更多
关键词 Auditory perception MULTI-SENSOR feature adaptive fusion abnormal noise recognition vehicle interior noise
下载PDF
Vehicle recognition and tracking based on simulated annealing chaotic particle swarm optimization-Gauss particle filter algorithm
3
作者 王伟峰 YANG Bo +1 位作者 LIU Hanfei QIN Xuebin 《High Technology Letters》 EI CAS 2023年第2期113-121,共9页
Target recognition and tracking is an important research filed in the surveillance industry.Traditional target recognition and tracking is to track moving objects, however, for the detected moving objects the specific... Target recognition and tracking is an important research filed in the surveillance industry.Traditional target recognition and tracking is to track moving objects, however, for the detected moving objects the specific content can not be determined.In this paper, a multi-target vehicle recognition and tracking algorithm based on YOLO v5 network architecture is proposed.The specific content of moving objects are identified by the network architecture, furthermore, the simulated annealing chaotic mechanism is embedded in particle swarm optimization-Gauss particle filter algorithm.The proposed simulated annealing chaotic particle swarm optimization-Gauss particle filter algorithm(SA-CPSO-GPF) is used to track moving objects.The experiment shows that the algorithm has a good tracking effect for the vehicle in the monitoring range.The root mean square error(RMSE), running time and accuracy of the proposed method are superior to traditional methods.The proposed algorithm has very good application value. 展开更多
关键词 vehicle recognition target tracking annealing chaotic particle swarm Gauss particle filter(GPF)algorithm
下载PDF
Traffic light detection and recognition in intersections based on intelligent vehicle
4
作者 张宁 何铁军 +1 位作者 高朝晖 黄卫 《Journal of Southeast University(English Edition)》 EI CAS 2008年第4期517-521,共5页
To ensure revulsive driving of intelligent vehicles at intersections, a method is presented to detect and recognize the traffic lights. First, the stabling siding at intersections is detected by applying Hough transfo... To ensure revulsive driving of intelligent vehicles at intersections, a method is presented to detect and recognize the traffic lights. First, the stabling siding at intersections is detected by applying Hough transformation. Then, the colors of traffic lights are detected with color space transformation. Finally, self-associative memory is used to recognize the countdown characters of the traffic lights. Test results at 20 real intersections show that the ratio of correct stabling siding recognition reaches up to 90%;and the ratios of recognition of traffic lights and divided characters are 85% and 97%, respectively. The research proves that the method is efficient for the detection of stabling siding and is robust enough to recognize the characters from images with noise and broken edges. 展开更多
关键词 intelligent vehicle stabling siding detection traffic lights detection self-associative memory light-emitting diode (LED) characters recognition
下载PDF
Neural Network-Powered License Plate Recognition System Design
5
作者 Sakib Hasan Md Nagib Mahfuz Sunny +1 位作者 Abdullah Al Nahian Mohammad Yasin 《Engineering(科研)》 2024年第9期284-300,共17页
The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The ... The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations. 展开更多
关键词 Intelligent Traffic Control Systems Automatic License Plate recognition (ALPR) Neural Networks vehicle Surveillance Traffic Management License Plate recognition Algorithms Image Extraction Character Segmentation Character recognition Low-Light Environments Inclement Weather Empirical Findings Algorithm Accuracy Simulation Outcomes DIGITALIZATION
下载PDF
Intelligent Vehicle Auxiliary Handling System Based on the Internet of Things Technology
6
作者 Chenxiao Wu Jue Wang +2 位作者 Han Sui Jingru Li Zihang Wang 《Journal of Electronic Research and Application》 2024年第3期198-206,共9页
This paper proposes an intelligent vehicle auxiliary handling system based on Internet of Things(IoT)technology,featuring an innovative holding mechanism design that adjusts to the length and width of various vehicles... This paper proposes an intelligent vehicle auxiliary handling system based on Internet of Things(IoT)technology,featuring an innovative holding mechanism design that adjusts to the length and width of various vehicles.The system combines precise positioning using satellite tracking technology,intelligent recognition via OpenCV,and the interconnectivity of IoT.This intelligent vehicle auxiliary handling system can independently identify vehicle positions and plan optimal handling paths,eliminating the traditional reliance on manual operation.It offers efficient and accurate handling,setting a new trend in the handling industry.Additionally,the system integrates seamlessly with parking lot management systems,providing real-time updates on vehicle locations and statuses.This allows managers to monitor the parking lot operations clearly and efficiently.This intelligent coordination greatly enhances overall work efficiency and streamlines parking management.Overall,the innovative design of the intelligent vehicle auxiliary handling system represents a significant breakthrough in both function and performance,gaining user favor with its smooth operation.Looking ahead,continued technological advancements and the expansion of application fields will bring even more vitality and intelligence to societal development. 展开更多
关键词 vehicle handling Intelligent network OPENCV Image recognition
下载PDF
A Two-Stage Vehicle Type Recognition Method Combining the Most Effective Gabor Features 被引量:5
7
作者 Wei Sun Xiaorui Zhang +2 位作者 Xiaozheng He Yan Jin Xu Zhang 《Computers, Materials & Continua》 SCIE EI 2020年第12期2489-2510,共22页
Vehicle type recognition(VTR)is an important research topic due to its significance in intelligent transportation systems.However,recognizing vehicle type on the real-world images is challenging due to the illuminatio... Vehicle type recognition(VTR)is an important research topic due to its significance in intelligent transportation systems.However,recognizing vehicle type on the real-world images is challenging due to the illumination change,partial occlusion under real traffic environment.These difficulties limit the performance of current state-of-art methods,which are typically based on single-stage classification without considering feature availability.To address such difficulties,this paper proposes a two-stage vehicle type recognition method combining the most effective Gabor features.The first stage leverages edge features to classify vehicles by size into big or small via a similarity k-nearest neighbor classifier(SKNNC).Further the more specific vehicle type such as bus,truck,sedan or van is recognized by the second stage classification,which leverages the most effective Gabor features extracted by a set of Gabor wavelet kernels on the partitioned key patches via a kernel sparse representation-based classifier(KSRC).A verification and correction step based on minimum residual analysis is proposed to enhance the reliability of the VTR.To improve VTR efficiency,the most effective Gabor features are selected through gray relational analysis that leverages the correlation between Gabor feature image and the original image.Experimental results demonstrate that the proposed method not only improves the accuracy of VTR but also enhances the recognition robustness to illumination change and partial occlusion. 展开更多
关键词 vehicle type recognition improved Canny algorithm Gabor filter k-nearest neighbor classification grey relational analysis kernel sparse representation two-stage classification
下载PDF
Adaptive key SURF feature extraction and application in unmanned vehicle dynamic object recognition 被引量:1
8
作者 杜明芳 王军政 +2 位作者 李静 李楠 李多扬 《Journal of Beijing Institute of Technology》 EI CAS 2015年第1期83-90,共8页
A new method based on adaptive Hessian matrix threshold of finding key SRUF ( speeded up robust features) features is proposed and is applied to an unmanned vehicle for its dynamic object recognition and guided navi... A new method based on adaptive Hessian matrix threshold of finding key SRUF ( speeded up robust features) features is proposed and is applied to an unmanned vehicle for its dynamic object recognition and guided navigation. First, the object recognition algorithm based on SURF feature matching for unmanned vehicle guided navigation is introduced. Then, the standard local invariant feature extraction algorithm SRUF is analyzed, the Hessian Metrix is especially discussed, and a method of adaptive Hessian threshold is proposed which is based on correct matching point pairs threshold feedback under a close loop frame. At last, different dynamic object recognition experi- ments under different weather light conditions are discussed. The experimental result shows that the key SURF feature abstract algorithm and the dynamic object recognition method can be used for un- manned vehicle systems. 展开更多
关键词 dynamic object recognition key SURF feature feature matching adaptive Hessianthreshold unmanned vehicle
下载PDF
Markov chain-based platoon recognition model in mixed traffic with human-driven and connected and autonomous vehicles 被引量:1
9
作者 DING Shen-zhen CHEN Xu-mei YU Lei 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1521-1536,共16页
Many vehicle platoons are interrupted while traveling on roads,especially at urban signalized intersections.One reason for such interruptions is the inability to exchange real-time information between traditional huma... Many vehicle platoons are interrupted while traveling on roads,especially at urban signalized intersections.One reason for such interruptions is the inability to exchange real-time information between traditional human-driven vehicles and intersection infrastructure.Thus,this paper develops a Markov chain-based model to recognize platoons.A simulation experiment is performed in Vissim based on field data extracted from video recordings to prove the model’s applicability.The videos,recorded with a high-definition camera,contain field driving data from three Tesla vehicles,which can achieve Level 2 autonomous driving.The simulation results show that the recognition rate exceeds 80%when the connected and autonomous vehicle penetration rate is higher than 0.7.Whether a vehicle is upstream or downstream of an intersection also affects the performance of platoon recognition.The platoon recognition model developed in this paper can be used as a signal control input at intersections to reduce the unnecessary interruption of vehicle platoons and improve traffic efficiency. 展开更多
关键词 mixed traffic connected and autonomous vehicles Markov chain platoon recognition Vissim simulation
下载PDF
Cold Start Problem of Vehicle Model Recognition under Cross-Scenario Based on Transfer Learning 被引量:1
10
作者 Hongbo Wang Qian Xue +2 位作者 Tong Cui Yangyang Li Huacheng Zeng 《Computers, Materials & Continua》 SCIE EI 2020年第4期337-351,共15页
As a major function of smart transportation in smart cities,vehicle model recognition plays an important role in intelligent transportation.Due to the difference among different vehicle models recognition datasets,the... As a major function of smart transportation in smart cities,vehicle model recognition plays an important role in intelligent transportation.Due to the difference among different vehicle models recognition datasets,the accuracy of network model training in one scene will be greatly reduced in another one.However,if you don’t have a lot of vehicle model datasets for the current scene,you cannot properly train a model.To address this problem,we study the problem of cold start of vehicle model recognition under cross-scenario.Under the condition of small amount of datasets,combined with the method of transfer learning,load the DAN(Deep Adaptation Networks)and JAN(Joint Adaptation Networks)domain adaptation modules into the convolutional neural network AlexNet and ResNet,and get four models:AlexNet-JAN,AlexNet-DAN,ResNet-JAN,and ResNet-DAN which can achieve a higher accuracy at the beginning.Through experiments,transfer the vehicle model recognition from the network image dataset(source domain)to the surveillance-nature dataset(target domain),both Top-1 and Top-5 accuracy have been improved by at least 20%. 展开更多
关键词 vehicle model recognition transfer learning cold start and artificial intelligence
下载PDF
Recognition algorithm for turn light of front vehicle
11
作者 李仪 蔡自兴 唐琎 《Journal of Central South University》 SCIE EI CAS 2012年第2期522-526,共5页
Intelligent vehicle needs the turn light information of front vehicles to make decisions in autonomous navigation. A recognition algorithm was designed to get information of turn light. Approximated center segmentatio... Intelligent vehicle needs the turn light information of front vehicles to make decisions in autonomous navigation. A recognition algorithm was designed to get information of turn light. Approximated center segmentation method was designed to divide the front vehicle image into two parts by using geometry information. The number of remained pixels of vehicle image which was filtered by the morphologic feaatres was got by adaptive threshold method, and it was applied to recognizing the lights flashing. The experimental results show that the algorithm can not only distinguish the two turn lights of vehicle but also recognize the information of them. The algorithm is quiet effective, robust and satisfactory in real-time performance. 展开更多
关键词 intelligent vehicle turn light recognition adaptive threshold front vehicle
下载PDF
Automatic Vehicle License Recognition Based on Video Vehicular Detection System
12
作者 杨兆选 陈杨 +1 位作者 何英华 吴骏 《Transactions of Tianjin University》 EI CAS 2006年第3期199-203,共5页
Traditional methods of license character extraction cannot meet the requirements of recognition accuracy and speed rendered by the video vehicular detection system. Therefore, a license plate localization method based... Traditional methods of license character extraction cannot meet the requirements of recognition accuracy and speed rendered by the video vehicular detection system. Therefore, a license plate localization method based on multi-scale edge detection and a character segmentation algorithm based on Markov random field model is presented. Results of experiments demonstrate that the method yields more accurate license character extraction in contrast to traditional localization method based on edge detection by difference operator and character segmentation based on threshold. The accuracy increases from 90% to 94% under preferable illumination, while under poor condition, it increases more than 5%. When the two improved algorithms are used, the accuracy and speed of automatic license recognition meet the system's requirement even under the noisy circumstance or uneven illumination. 展开更多
关键词 vehicle license recognition license plate localization character segmentation
下载PDF
Indoor versus outdoor scene recognition for navigation of a micro aerial vehicle using spatial color gist wavelet descriptors
13
作者 Anitha Ganesan Anbarasu Balasubramanian 《Visual Computing for Industry,Biomedicine,and Art》 2019年第1期192-204,共13页
In the context of improved navigation for micro aerial vehicles,a new scene recognition visual descriptor,called spatial color gist wavelet descriptor(SCGWD),is proposed.SCGWD was developed by combining proposed Ohta ... In the context of improved navigation for micro aerial vehicles,a new scene recognition visual descriptor,called spatial color gist wavelet descriptor(SCGWD),is proposed.SCGWD was developed by combining proposed Ohta color-GIST wavelet descriptors with census transform histogram(CENTRIST)spatial pyramid representation descriptors for categorizing indoor versus outdoor scenes.A binary and multiclass support vector machine(SVM)classifier with linear and non-linear kernels was used to classify indoor versus outdoor scenes and indoor scenes,respectively.In this paper,we have also discussed the feature extraction methodology of several,state-of-the-art visual descriptors,and four proposed visual descriptors(Ohta color-GIST descriptors,Ohta color-GIST wavelet descriptors,enhanced Ohta color histogram descriptors,and SCGWDs),in terms of experimental perspectives.The proposed enhanced Ohta color histogram descriptors,Ohta color-GIST descriptors,Ohta color-GIST wavelet descriptors,SCGWD,and state-of-the-art visual descriptors were evaluated,using the Indian Institute of Technology Madras Scene Classification Image Database two,an Indoor-Outdoor Dataset,and the Massachusetts Institute of Technology indoor scene classification dataset[(MIT)-67].Experimental results showed that the indoor versus outdoor scene recognition algorithm,employing SVM with SCGWDs,produced the highest classification rates(CRs)—95.48%and 99.82%using radial basis function kernel(RBF)kernel and 95.29%and 99.45%using linear kernel for the IITM SCID2 and Indoor-Outdoor datasets,respectively.The lowest CRs—2.08%and 4.92%,respectively—were obtained when RBF and linear kernels were used with the MIT-67 dataset.In addition,higher CRs,precision,recall,and area under the receiver operating characteristic curve values were obtained for the proposed SCGWDs,in comparison with state-of-the-art visual descriptors. 展开更多
关键词 Micro aerial vehicle Scene recognition NAVIGATION Visual descriptors Support vector machine
下载PDF
Vehicle Head and Tail Recognition Algorithm for Lightweight DCDSNet
14
作者 Chao Wang Kaijie Zhang +3 位作者 Xiaoyong Yu Dejun Li Wei Xie Xinqiao Wang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4451-4473,共23页
In the model of the vehicle recognition algorithm implemented by the convolutional neural network,the model needs to compute and store a lot of parameters.Too many parameters occupy a lot of computational resources ma... In the model of the vehicle recognition algorithm implemented by the convolutional neural network,the model needs to compute and store a lot of parameters.Too many parameters occupy a lot of computational resources making it difficult to run on computers with poor performance.Therefore,obtaining more efficient feature information of target image or video with better accuracy on computers with limited arithmetic power becomes the main goal of this research.In this paper,a lightweight densely connected,and deeply separable convolutional network(DCDSNet)algorithmis proposed to achieve this goal.Visual Geometry Group(VGG)model is improved by utilizing the convolution instead of the fully connected module,the deeply separable convolution module,and the densely connected network module,with the first two modules reducing the parameters and the third module allowing the algorithm to have more features in a limited number of parameters.The algorithm achieves better results in the mine vehicle recognition dataset.Experiments show that the recognition accuracy is improved by 4.41% compared to VGG19 and the amount of parameters is reduced by 71% compared to VGG19. 展开更多
关键词 VGGNet vehicle head and tail recognition densely connected depthwise separable convolutional
下载PDF
A Probabilistic Architecture of Long-Term Vehicle Trajectory Prediction for Autonomous Driving 被引量:4
15
作者 Jinxin Liu Yugong Luo +3 位作者 Zhihua Zhong Keqiang Li Heye Huang Hui Xiong 《Engineering》 SCIE EI CAS 2022年第12期228-239,共12页
In mixed and dynamic traffic environments,accurate long-term trajectory forecasting of surrounding vehicles is one of the indispensable preconditions for autonomous vehicles to accomplish reasonable behavioral decisio... In mixed and dynamic traffic environments,accurate long-term trajectory forecasting of surrounding vehicles is one of the indispensable preconditions for autonomous vehicles to accomplish reasonable behavioral decisions and guarantee driving safety.In this paper,we propose an integrated probabilistic architecture for long-term vehicle trajectory prediction,which consists of a driving inference model(DIM)and a trajectory prediction model(TPM).The DIM is designed and employed to accurately infer the potential driving intention based on a dynamic Bayesian network.The proposed DIM incorporates the basic traffic rules and multivariate vehicle motion information.To further improve the prediction accuracy and realize uncertainty estimation,we develop a Gaussian process-based TPM,considering both the short-term prediction results of the vehicle model and the driving motion characteristics.Afterward,the effectiveness of our novel approach is demonstrated by conducting experiments on a public naturalistic driving dataset under lane-changing scenarios.The superior performance on the task of long-term trajectory prediction is presented and verified by comparing with other advanced methods. 展开更多
关键词 Autonomous driving Dynamic Bayesian network Driving intention recognition Gaussian process vehicle trajectory prediction
下载PDF
Deep Learning Based License Plate Number Recognition for Smart Cities 被引量:1
16
作者 T.Vetriselvi E.Laxmi Lydia +4 位作者 Sachi Nandan Mohanty Eatedal Alabdulkreem Shaha Al-Otaibi Amal Al-Rasheed Romany F.Mansour 《Computers, Materials & Continua》 SCIE EI 2022年第1期2049-2064,共16页
Smart city-aspiring urban areas should have a number of necessary elements in place to achieve the intended objective.Precise controlling and management of traffic conditions,increased safety and surveillance,and enha... Smart city-aspiring urban areas should have a number of necessary elements in place to achieve the intended objective.Precise controlling and management of traffic conditions,increased safety and surveillance,and enhanced incident avoidance and management should be top priorities in smart city management.At the same time,Vehicle License Plate Number Recognition(VLPNR)has become a hot research topic,owing to several real-time applications like automated toll fee processing,traffic law enforcement,private space access control,and road traffic surveillance.Automated VLPNR is a computer vision-based technique which is employed in the recognition of automobiles based on vehicle number plates.The current research paper presents an effective Deep Learning(DL)-based VLPNR called DLVLPNR model to identify and recognize the alphanumeric characters present in license plate.The proposed model involves two main stages namely,license plate detection and Tesseract-based character recognition.The detection of alphanumeric characters present in license plate takes place with the help of fast RCNN with Inception V2 model.Then,the characters in the detected number plate are extracted using Tesseract Optical Character Recognition(OCR)model.The performance of DL-VLPNR model was tested in this paper using two benchmark databases,and the experimental outcome established the superior performance of the model compared to other methods. 展开更多
关键词 Deep learning smart city tesseract computer vision vehicle license plate recognition
下载PDF
Vehicle Real-time Location Based on Visual Perception Model 被引量:1
17
作者 LIUZhi-fang YOUZhi-sheng 《Semiconductor Photonics and Technology》 CAS 2003年第1期55-61,共7页
Vehicle recognition system (VRS) plays a very important role in the field of intelligent transportation systems.A novel and intuitive method is proposed for vehicle location.The method we provide for vehicle location ... Vehicle recognition system (VRS) plays a very important role in the field of intelligent transportation systems.A novel and intuitive method is proposed for vehicle location.The method we provide for vehicle location is based on human visual perception model technique. The perception color space HSI in this algorithm is adopted.Three color components of a color image and more potential edge patterns are integrated for solving the feature extraction problem.A fast and automatic threshold technique based on human visual perception model is also developed.The vertical edge projection and horizontal edge projection are adopted for locating left-right boundary of vehicle and top-bottom boundary of vehicle, respectively. Very promising experimental results are obtained using real-time vehicle image sequences, which have confirmed that this proposed location vehicle method is efficient and reliable, and its calculation speed meets the needs of the VRS. 展开更多
关键词 vehicle recognition system vehicle location visual perception model vertical edge projection horizontal edge projection dynamic target detection
下载PDF
Safer Design and Less Cost Operation for Low-Traffic Long-Road Illumination Using Control System Based on Pattern Recognition Technique 被引量:1
18
作者 Muhammad M. A. S. Mahmoud Leyla Muradkhanli 《Intelligent Control and Automation》 2020年第3期47-62,共16页
The paper covers analysis and investigation of lighting automation system in low-traffic long-roads. The main objective is to provide optimal solution between expensive safe design that utilizes continuous street ligh... The paper covers analysis and investigation of lighting automation system in low-traffic long-roads. The main objective is to provide optimal solution between expensive safe design that utilizes continuous street lighting system at night for the entire road, or inexpensive design that sacrifices the safety, relying on using vehicles lighting, to eliminate the problem of high cost energy consumption during the night operation of the road. By taking into account both of these factors, smart lighting automation system is proposed using Pattern Recognition Technique applied on vehicle number-plates. In this proposal, the road is sectionalized into zones, and based on smart Pattern Recognition Technique, the control system of the road lighting illuminates only the zone that the vehicles pass through. Economic analysis is provided in this paper to support the value of using this design of lighting control system. 展开更多
关键词 Road Lighting Control Road Lighting Automation vehicle Number-Plate Pattern recognition Smart Grid Power Management Low Traffic Roads Image Processing
下载PDF
A New Algorithmic Approach for Detection and Identification of Vehicle Plate Numbers
19
作者 A. Akoum B. Daya P. Chauvet 《Journal of Software Engineering and Applications》 2010年第2期99-108,共10页
This work proposes a method for the detection and identification of parked vehicles stationed. This technique composed many algorithms for the detection, localization, segmentation, extraction and recognition of numbe... This work proposes a method for the detection and identification of parked vehicles stationed. This technique composed many algorithms for the detection, localization, segmentation, extraction and recognition of number plates in images. It is acts of a technology of image processing used to identify the vehicles by their number plates. Knowing that we work on images whose level of gray is sampled with (120×180), resulting from a base of abundant data by PSA. We present two algorithms allowing the detection of the horizontal position of the vehicle: the classical method “horizontal gradients” and our approach “symmetrical method”. In fact, a car seen from the front presents a symmetry plan and by detecting its axis, that one finds its position in the image. A phase of localization is treated using the parameter MGD (Maximum Gradient Difference) which allows locating all the segments of text per horizontal scan. A specific technique of filtering, combining the method of symmetry and the localization by the MGD allows eliminating the blocks which don’t pass by the axis of symmetry and thus find the good block containing the number plate. Once we locate the plate, we use four algorithms that must be realized in order to allow our system to identify a license plate. The first algorithm is adjusting the intensity and the contrast of the image. The second algorithm is segmenting the characters on the plate using profile method. Then extracting and resizing the characters and finally recognizing them by means of optical character recogni-tion OCR. The efficiency of these algorithms is shown using a database of 350 images for the tests. We find a rate of lo-calization of 99.6% on a basis of 350 images with a rate of false alarms (wrong block text) of 0.88% by image. 展开更多
关键词 vehicle DETECTION Segmentation Extraction recognition Number Plate GRADIENT METHOD SYMMETRY METHOD Real-Time System
下载PDF
Vehicle color recognition based on smooth modulation neural network with multi-scale feature fusion
20
作者 Mingdi HU Long BAI +2 位作者 Jiulun FAN Sirui ZHAO Enhong CHEN 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第3期91-102,共12页
Vehicle Color Recognition(VCR)plays a vital role in intelligent traffic management and criminal investigation assistance.However,the existing vehicle color datasets only cover 13 classes,which can not meet the current... Vehicle Color Recognition(VCR)plays a vital role in intelligent traffic management and criminal investigation assistance.However,the existing vehicle color datasets only cover 13 classes,which can not meet the current actual demand.Besides,although lots of efforts are devoted to VCR,they suffer from the problem of class imbalance in datasets.To address these challenges,in this paper,we propose a novel VCR method based on Smooth Modulation Neural Network with Multi-Scale Feature Fusion(SMNN-MSFF).Specifically,to construct the benchmark of model training and evaluation,we first present a new VCR dataset with 24 vehicle classes,Vehicle Color-24,consisting of 10091 vehicle images from a 100-hour urban road surveillance video.Then,to tackle the problem of long-tail distribution and improve the recognition performance,we propose the SMNN-MSFF model with multiscale feature fusion and smooth modulation.The former aims to extract feature information from local to global,and the latter could increase the loss of the images of tail class instances for training with class-imbalance.Finally,comprehensive experimental evaluation on Vehicle Color-24 and previously three representative datasets demonstrate that our proposed SMNN-MSFF outperformed state-of-the-art VCR methods.And extensive ablation studies also demonstrate that each module of our method is effective,especially,the smooth modulation efficiently help feature learning of the minority or tail classes.Vehicle Color-24 and the code of SMNN-MSFF are publicly available and can contact the author to obtain. 展开更多
关键词 vehicle color recognition benchmark dataset multi-scale feature fusion long-tail distribution improved smooth l1 loss
原文传递
上一页 1 2 66 下一页 到第
使用帮助 返回顶部