Redundant techniques are widely adopted in vehicle management computer (VMC) to ensure that VMC has high reliability and safety. At the same time, it makes VMC have special characteristics, e.g., failure correlation...Redundant techniques are widely adopted in vehicle management computer (VMC) to ensure that VMC has high reliability and safety. At the same time, it makes VMC have special characteristics, e.g., failure correlation, event simultaneity, and failure self-recovery. Accordingly, the reliability and safety analysis to redundant VMC system (RVMCS) becomes more difficult. Aimed at the difficulties in RVMCS reliability modeling, this paper adopts generalized stochastic Petri nets to establish the reliability and safety models of RVMCS. Then this paper analyzes RVMCS oper- ating states and potential threats to flight control system. It is verified by simulation that the reli- ability of VMC is not the product of hardware reliability and software reliability, and the interactions between hardware and software faults can reduce the real reliability of VMC obviously. Furthermore, the failure undetected states and false alarming states inevitably exist in RVMCS due to the influences of limited fault monitoring coverage and false alarming probability of fault mon- itoring devices (FMD). RVMCS operating in some failure undetected states will produce fatal threats to the safety of flight control system. RVMCS operating in some false alarming states will reduce utility of RVMCS obviously. The results abstracted in this paper can guide reliable VMC and efficient FMD designs. The methods adopted in this paper can also be used to analyze other intelligent systems' reliability.展开更多
RFID is an important technology in the Internet of things that has the characteristics of safe, affordable, efficient, which received widespread attention and research. This paper proposes a UHF RFID-based intelligent...RFID is an important technology in the Internet of things that has the characteristics of safe, affordable, efficient, which received widespread attention and research. This paper proposes a UHF RFID-based intelligent vehicle management system (the Internet). The system consists of RFID hardware system, CDMA system, the GIA system, data processing system, and can realize intelligent vehicle identification, location, tracking, velocity measurement, monitoring and management, to address the current severe road congestion, speeding, vehicle theft and vehicle overload management and other issues. Software and hardware design of intelligent vehicle management system based on RFID, focuses on systems, security design, selection of RFID cards and vehicle access control software features, the fleet management system is not only convenient, but also intelligent identification of vehicles and vehicle theft, in the community, school, car park and vehicle management occasions has a good application.展开更多
Guangzhou, capital of south China’s Guangdong Province, will further reform the use of official cars as part of its efforts to alleviate traffic jams, said the city’s traffic authorities on January 23.
Batteries transfer management is one important aspect in electric vehicle(EV)network's intelligent operation management system.Batteries transfer is a special and much more complex VRP(Vehicle Routing Problem) whi...Batteries transfer management is one important aspect in electric vehicle(EV)network's intelligent operation management system.Batteries transfer is a special and much more complex VRP(Vehicle Routing Problem) which takes the multiple constraints such as dynamic multi-depots,time windows,simultaneous pickups and deliveries,distance minimization,etc.into account.We call it VRPEVB(VRP with EV Batteries).This paper,based on the intelligent management model of EV's battery power,puts forward a battery transfer algorithm for the EV network which considers the traffic congestion that changes dynamically and uses improved Ant Colony Optimization.By setting a reasonable tabv range,special update rules of the pheromone and path list memory functions,the algorithm can have a better convergence,and its feasibility is proved by the experiment in an EV's demonstration operation system.展开更多
Growing concerns about environmental quality of cities are calling for sustainable road transportation technologies. EV (electric vehicles), for public and private transport, can contribute significantly to the lowe...Growing concerns about environmental quality of cities are calling for sustainable road transportation technologies. EV (electric vehicles), for public and private transport, can contribute significantly to the lowering of the current pollution levels. However, the EV use is currently facing several weaknesses among which are: limited driving range, high cost and overall limited efficiency. Electric vehicles management is a relatively recent problem; its purpose is to expedite the establishment of a costumer convenient, cost-effective, EV infrastructure. Inspire the relevance of the problem, a few small research communities in this field work on some of its aspects. In this work, some important issues of this problem are discussed and the contribution of combinatorial optimization tools for solving some challenging subproblems is studied.展开更多
The Administrative Regulation on the Recall of Defective Motor Vehicles has officially entered into force on October 1st, 2004, which means the management on defective products has made a substantive progress. The ena...The Administrative Regulation on the Recall of Defective Motor Vehicles has officially entered into force on October 1st, 2004, which means the management on defective products has made a substantive progress. The enactment and enforcement of the Administrative Regulation has generated active responses in our society and drawn much attention from the automobile industry. Up to March 2005, there have been 15 domestic and foreign auto manufacturers initiating voluntary recalls since the Administrative Regulation on the Recall of Defective Motor Vehicles was issued in March 2004, and 312864 vehicles have been recalled. All the relevant firms, types, models, numbers and the date are as the following table 1.展开更多
Zimbabwe has witnessed the evolution of Information Communication Technology (ICT). The vehicle population soared to above 1.2 million hence rendering the Transport and Insurance domains complex. Therefore, there is a...Zimbabwe has witnessed the evolution of Information Communication Technology (ICT). The vehicle population soared to above 1.2 million hence rendering the Transport and Insurance domains complex. Therefore, there is a need to look at ways that can augment conventional Vehicular Management Information Systems (VMIS) in transforming business processes through Telematics. This paper aims to contextualise the role that telematics can play in transforming the Insurance Ecosystem in Zimbabwe. The main objective was to investigate the integration of Usage-Based Insurance (UBI) with vehicle tracking solutions provided by technology companies like Econet Wireless in Zimbabwe, aiming to align customer billing with individual risk profiles and enhance the synergy between technology and insurance service providers in the motor insurance ecosystem. A triangulation through structured interviews, questionnaires, and literature review, supported by Information Systems Analysis and Design techniques was conducted. The study adopted a case study approach, qualitatively analyzing the complexities of the Telematics insurance ecosystem in Zimbabwe, informed by the TOGAF framework. A case-study approach was applied to derive themes whilst applying within and cross-case analysis. Data was collected using questionnaires, and interviews. The findings of the research clearly show the importance of Telematics in modern-day insurance and the positive relationship between technology and insurance business performance. The study, therefore revealed how UBI can incentivize positive driver behavior, potentially reducing insurance premiums for safe drivers and lowering the incidence of claims against insurance companies. Future work can be done on studying the role of Telematics in combating highway crime and corruption.展开更多
It is of increasing importance to design and implement vehicle networks for transferring information between electrical control units on Hybrid Electrical Vehicle (HEV). This paper presents a scheme of using Control...It is of increasing importance to design and implement vehicle networks for transferring information between electrical control units on Hybrid Electrical Vehicle (HEV). This paper presents a scheme of using Controller Area Network (CAN) technology to realize communication and datasharing between the electrical units on the HEV. The principle and communication protocol of Electrical Control Units (ECU) CAN node are introduced. By considering different sensitivity of the devices to the latency of data transportation, a new design procedure is proposed for the purpose of simplifying network codes and wiring harness, reducing assembly space and weight, improving assembly efficiency, and enhancing fault-diagnose in auto networks.展开更多
The current research of vehicle electrical power supply system mainly focuses on electric vehicles(EV) and hybrid electric vehicles(HEV).The vehicle electrical power supply system used in traditional fuel vehicles...The current research of vehicle electrical power supply system mainly focuses on electric vehicles(EV) and hybrid electric vehicles(HEV).The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect;electrical/electronic devices(EEDs) applied in vehicles are usually directly connected with the vehicle's battery.With increasing numbers of EEDs being applied in traditional fuel vehicles,vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively.In this paper,a new vehicle electrical power supply system for traditional fuel vehicles,which accounts for all electrical/electronic devices and complex work conditions,is proposed based on a smart electrical/electronic device(SEED) system.Working as an independent intelligent electrical power supply network,the proposed system is isolated from the electrical control module and communication network,and access to the vehicle system is made through a bus interface.This results in a clean controller power supply with no electromagnetic interference.A new practical battery state of charge(So C) estimation method is also proposed to achieve more accurate So C estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel.Optimized protection methods are also used to ensure power supply safety.Experiments and tests on a traditional fuel vehicle are performed,and the results reveal that the battery So C is calculated quickly and sufficiently accurately for battery over-discharge protection.Over-current protection is achieved,and the entire vehicle's power utilization is optimized.For traditional fuel vehicles,the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture,enhancing system reliability and security.展开更多
In the era of the Internet of Things(IoT),the ever-increasing number of devices connected to the IoT networks also increases the energy consumption on the edge.This is prohibitive since the devices living on the edge ...In the era of the Internet of Things(IoT),the ever-increasing number of devices connected to the IoT networks also increases the energy consumption on the edge.This is prohibitive since the devices living on the edge are generally resource constrained devices in terms of energy consumption and computational power.Thus,trying to tackle this issue,in this paper,a fully automated end-to-end IoT system for real time monitoring of the status of a moving vehicle is proposed.The IoT system consists mainly of three components:(1)the ultra-lowpower consumptionWireless SensorNode(WSN),(2)the IoT gateway and(3)the IoT platform.In this scope,a selfpoweredWSN having ultra-low energy consumption(less than 10 mJ),which can be produced by environmental harvesting systems,is developed.WSN is used for collecting sensors’measurements from the vehicle and transmitting them to the IoT gateway,by exploiting a low energy communication protocol(i.e.,BLE).A powerful IoT gateway gathers the sensors’measurements,harmonizes,stores temporary and transmits them wirelessly,to a backend server(i.e.,LTE).And finally,the IoT platform,which in essence is a web application user interface(UI),used mainly for almost real time visualization of sensors’measurements,but also for sending alerts and control signals to enable actuators,installed in the vehicle near to the sensors field.The proposed system is scalable and it can be adopted for monitoring a large number of vehicles,thus providing a fully automatic IoT solution for vehicle fleet management.Moreover,it can be extended for simultaneous monitoring of additional parameters,supporting other low energy communication protocols and producing various kinds of alerts and control signals.展开更多
A system is developed to improve the series battery packs uniformities and charging protection and the implementation of battery equalization charging and protection system is also introduced. The functions of equaliz...A system is developed to improve the series battery packs uniformities and charging protection and the implementation of battery equalization charging and protection system is also introduced. The functions of equalization charging and overcharging protection are analyzed and the control model of series battery packs equalization charging is setup. The diverting-current and feedback bus voltage are measured during the series Li-ion battery packs equalization charging experiment. The field operation on Electric luxury transit bus BFC6100EV shows that the system betters the battery series charging uniformities and overcharging protection, improves the battery performance and extends the battery life.展开更多
A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal...A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal components,electric motor,system efficiency optimization models are developed.According to the target of instantaneous optimization of system efficiency,operating ranges of each mode of power-train are determined,and the corresponding energy management strategies are established.The simulation results demonstrate that the energy management strategy proposed can substantially improve the vehicle fuel economy,and keep battery state of charge(SOC)change in a reasonable variation range.展开更多
Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybri...Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em-展开更多
Delays of both pedestrians,who are classified according to whether complying with traffic law,and vehicles at a signalized crosswalk are analyzed in this paper.The truncated Adams' model is applied to generate the...Delays of both pedestrians,who are classified according to whether complying with traffic law,and vehicles at a signalized crosswalk are analyzed in this paper.The truncated Adams' model is applied to generate the probability and mean of delay of pedestrians non-complying with traffic law.Using the section-based traffic queuing-theory and the stochastic decomposition property of M/G/1vacation system with exhaustive service,the mean delay of vehicles is formulated.A multi-objective optimization model simultaneously minimizing the delays of pedestrians and vehicles during a signal period is proposed.The effects,which several model parameters have on the delays and the optimal solution of the model,are illustrated by numerical examples.展开更多
Besides grid-to-vehicle(G2 V) and vehicle-to-grid(V2 G) functions, the battery of an electric vehicle(EV) also has the specific feature of mobility. This means that EVs not only have the potential to utilize the stora...Besides grid-to-vehicle(G2 V) and vehicle-to-grid(V2 G) functions, the battery of an electric vehicle(EV) also has the specific feature of mobility. This means that EVs not only have the potential to utilize the storage of cheap electricity for use in high energy price periods, but can also transfer energy from one place to another place. Based on these special features of an EV battery, a new EV energy scheduling method has been developed and is described in this article. The approach is aimed at optimizing the utilization EV energy for EVs that are regularly used in multiple places. The objective is to minimize electricity costs from multiple meter points. This work applies real data in order to analyze the effectiveness of the method. The results show that by applying the control strategy presented in this paper at locations where the EVs are parked, the electricity cost can be reduced without shifting the demand and lowering customer's satisfaction. The effects of PV size and number of EVs on our model are also analyzed in this paper. This model has the potential to be used by energy system designers as a new perspective to determine optimal sizes of generators or storage devices in energy systems.展开更多
基金financed by the National Natural Science Foundation of China (No.61004022)111 Project of China Education Department
文摘Redundant techniques are widely adopted in vehicle management computer (VMC) to ensure that VMC has high reliability and safety. At the same time, it makes VMC have special characteristics, e.g., failure correlation, event simultaneity, and failure self-recovery. Accordingly, the reliability and safety analysis to redundant VMC system (RVMCS) becomes more difficult. Aimed at the difficulties in RVMCS reliability modeling, this paper adopts generalized stochastic Petri nets to establish the reliability and safety models of RVMCS. Then this paper analyzes RVMCS oper- ating states and potential threats to flight control system. It is verified by simulation that the reli- ability of VMC is not the product of hardware reliability and software reliability, and the interactions between hardware and software faults can reduce the real reliability of VMC obviously. Furthermore, the failure undetected states and false alarming states inevitably exist in RVMCS due to the influences of limited fault monitoring coverage and false alarming probability of fault mon- itoring devices (FMD). RVMCS operating in some failure undetected states will produce fatal threats to the safety of flight control system. RVMCS operating in some false alarming states will reduce utility of RVMCS obviously. The results abstracted in this paper can guide reliable VMC and efficient FMD designs. The methods adopted in this paper can also be used to analyze other intelligent systems' reliability.
文摘RFID is an important technology in the Internet of things that has the characteristics of safe, affordable, efficient, which received widespread attention and research. This paper proposes a UHF RFID-based intelligent vehicle management system (the Internet). The system consists of RFID hardware system, CDMA system, the GIA system, data processing system, and can realize intelligent vehicle identification, location, tracking, velocity measurement, monitoring and management, to address the current severe road congestion, speeding, vehicle theft and vehicle overload management and other issues. Software and hardware design of intelligent vehicle management system based on RFID, focuses on systems, security design, selection of RFID cards and vehicle access control software features, the fleet management system is not only convenient, but also intelligent identification of vehicles and vehicle theft, in the community, school, car park and vehicle management occasions has a good application.
文摘Guangzhou, capital of south China’s Guangdong Province, will further reform the use of official cars as part of its efforts to alleviate traffic jams, said the city’s traffic authorities on January 23.
基金supported by the 973 Program under Grant No.2011CB302506, 2012CB315802National Key Technology Research and Development Program of China under Grant No.2012BAH94F02+5 种基金The 863 Program under Grant No.2013AA102301NNSF of China under Grant No.61132001, 61170273Program for New Century Excel-lent Talents in University under Grant No. NCET-11-0592Project of New Generation Broad band Wireless Network under Grant No.2014ZX03006003The Technology Development and Experiment of Innovative Network Architecture(CNGI-12-03-007)The Open Fund Project of CAAC InformationTechnology Research Base(CAACITRB-201201)
文摘Batteries transfer management is one important aspect in electric vehicle(EV)network's intelligent operation management system.Batteries transfer is a special and much more complex VRP(Vehicle Routing Problem) which takes the multiple constraints such as dynamic multi-depots,time windows,simultaneous pickups and deliveries,distance minimization,etc.into account.We call it VRPEVB(VRP with EV Batteries).This paper,based on the intelligent management model of EV's battery power,puts forward a battery transfer algorithm for the EV network which considers the traffic congestion that changes dynamically and uses improved Ant Colony Optimization.By setting a reasonable tabv range,special update rules of the pheromone and path list memory functions,the algorithm can have a better convergence,and its feasibility is proved by the experiment in an EV's demonstration operation system.
文摘Growing concerns about environmental quality of cities are calling for sustainable road transportation technologies. EV (electric vehicles), for public and private transport, can contribute significantly to the lowering of the current pollution levels. However, the EV use is currently facing several weaknesses among which are: limited driving range, high cost and overall limited efficiency. Electric vehicles management is a relatively recent problem; its purpose is to expedite the establishment of a costumer convenient, cost-effective, EV infrastructure. Inspire the relevance of the problem, a few small research communities in this field work on some of its aspects. In this work, some important issues of this problem are discussed and the contribution of combinatorial optimization tools for solving some challenging subproblems is studied.
文摘The Administrative Regulation on the Recall of Defective Motor Vehicles has officially entered into force on October 1st, 2004, which means the management on defective products has made a substantive progress. The enactment and enforcement of the Administrative Regulation has generated active responses in our society and drawn much attention from the automobile industry. Up to March 2005, there have been 15 domestic and foreign auto manufacturers initiating voluntary recalls since the Administrative Regulation on the Recall of Defective Motor Vehicles was issued in March 2004, and 312864 vehicles have been recalled. All the relevant firms, types, models, numbers and the date are as the following table 1.
文摘Zimbabwe has witnessed the evolution of Information Communication Technology (ICT). The vehicle population soared to above 1.2 million hence rendering the Transport and Insurance domains complex. Therefore, there is a need to look at ways that can augment conventional Vehicular Management Information Systems (VMIS) in transforming business processes through Telematics. This paper aims to contextualise the role that telematics can play in transforming the Insurance Ecosystem in Zimbabwe. The main objective was to investigate the integration of Usage-Based Insurance (UBI) with vehicle tracking solutions provided by technology companies like Econet Wireless in Zimbabwe, aiming to align customer billing with individual risk profiles and enhance the synergy between technology and insurance service providers in the motor insurance ecosystem. A triangulation through structured interviews, questionnaires, and literature review, supported by Information Systems Analysis and Design techniques was conducted. The study adopted a case study approach, qualitatively analyzing the complexities of the Telematics insurance ecosystem in Zimbabwe, informed by the TOGAF framework. A case-study approach was applied to derive themes whilst applying within and cross-case analysis. Data was collected using questionnaires, and interviews. The findings of the research clearly show the importance of Telematics in modern-day insurance and the positive relationship between technology and insurance business performance. The study, therefore revealed how UBI can incentivize positive driver behavior, potentially reducing insurance premiums for safe drivers and lowering the incidence of claims against insurance companies. Future work can be done on studying the role of Telematics in combating highway crime and corruption.
文摘It is of increasing importance to design and implement vehicle networks for transferring information between electrical control units on Hybrid Electrical Vehicle (HEV). This paper presents a scheme of using Controller Area Network (CAN) technology to realize communication and datasharing between the electrical units on the HEV. The principle and communication protocol of Electrical Control Units (ECU) CAN node are introduced. By considering different sensitivity of the devices to the latency of data transportation, a new design procedure is proposed for the purpose of simplifying network codes and wiring harness, reducing assembly space and weight, improving assembly efficiency, and enhancing fault-diagnose in auto networks.
基金Supported by Collaborative Innovation Center of Intelligent New Energy Vehicle of U.S.and China-Clean Energy Research Center,Fund of China Scholarship Council(Grant No.201406215015)
文摘The current research of vehicle electrical power supply system mainly focuses on electric vehicles(EV) and hybrid electric vehicles(HEV).The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect;electrical/electronic devices(EEDs) applied in vehicles are usually directly connected with the vehicle's battery.With increasing numbers of EEDs being applied in traditional fuel vehicles,vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively.In this paper,a new vehicle electrical power supply system for traditional fuel vehicles,which accounts for all electrical/electronic devices and complex work conditions,is proposed based on a smart electrical/electronic device(SEED) system.Working as an independent intelligent electrical power supply network,the proposed system is isolated from the electrical control module and communication network,and access to the vehicle system is made through a bus interface.This results in a clean controller power supply with no electromagnetic interference.A new practical battery state of charge(So C) estimation method is also proposed to achieve more accurate So C estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel.Optimized protection methods are also used to ensure power supply safety.Experiments and tests on a traditional fuel vehicle are performed,and the results reveal that the battery So C is calculated quickly and sufficiently accurately for battery over-discharge protection.Over-current protection is achieved,and the entire vehicle's power utilization is optimized.For traditional fuel vehicles,the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture,enhancing system reliability and security.
基金support from the European Union’s Horizon 2020 Research and Innovation Programme for project InComEss under Grant Agreement Number 862597.
文摘In the era of the Internet of Things(IoT),the ever-increasing number of devices connected to the IoT networks also increases the energy consumption on the edge.This is prohibitive since the devices living on the edge are generally resource constrained devices in terms of energy consumption and computational power.Thus,trying to tackle this issue,in this paper,a fully automated end-to-end IoT system for real time monitoring of the status of a moving vehicle is proposed.The IoT system consists mainly of three components:(1)the ultra-lowpower consumptionWireless SensorNode(WSN),(2)the IoT gateway and(3)the IoT platform.In this scope,a selfpoweredWSN having ultra-low energy consumption(less than 10 mJ),which can be produced by environmental harvesting systems,is developed.WSN is used for collecting sensors’measurements from the vehicle and transmitting them to the IoT gateway,by exploiting a low energy communication protocol(i.e.,BLE).A powerful IoT gateway gathers the sensors’measurements,harmonizes,stores temporary and transmits them wirelessly,to a backend server(i.e.,LTE).And finally,the IoT platform,which in essence is a web application user interface(UI),used mainly for almost real time visualization of sensors’measurements,but also for sending alerts and control signals to enable actuators,installed in the vehicle near to the sensors field.The proposed system is scalable and it can be adopted for monitoring a large number of vehicles,thus providing a fully automatic IoT solution for vehicle fleet management.Moreover,it can be extended for simultaneous monitoring of additional parameters,supporting other low energy communication protocols and producing various kinds of alerts and control signals.
文摘A system is developed to improve the series battery packs uniformities and charging protection and the implementation of battery equalization charging and protection system is also introduced. The functions of equalization charging and overcharging protection are analyzed and the control model of series battery packs equalization charging is setup. The diverting-current and feedback bus voltage are measured during the series Li-ion battery packs equalization charging experiment. The field operation on Electric luxury transit bus BFC6100EV shows that the system betters the battery series charging uniformities and overcharging protection, improves the battery performance and extends the battery life.
基金Supported by the National Science and Technology Support Program(2013BAG12B01)Foundational and Advanced Research Program General Project of Chongqing City(cstc2013jcyjjq60002)
文摘A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal components,electric motor,system efficiency optimization models are developed.According to the target of instantaneous optimization of system efficiency,operating ranges of each mode of power-train are determined,and the corresponding energy management strategies are established.The simulation results demonstrate that the energy management strategy proposed can substantially improve the vehicle fuel economy,and keep battery state of charge(SOC)change in a reasonable variation range.
基金supported by the Natural Science Foundation of Hubei Province(Grant No.2015CFB586)
文摘Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em-
基金supported by the National Natural Science Foundation of China under Grant Nos.71261016and 71401050the Program for New Century Excellent Talents in University under Grant No.NCET-12-1016+1 种基金the Natural Science Foundation of Inner Mongolia of China under Grant No.2014JQ03the Fundamental Research Funds for the Central Universities under Grant No.2013HGBZ0174
文摘Delays of both pedestrians,who are classified according to whether complying with traffic law,and vehicles at a signalized crosswalk are analyzed in this paper.The truncated Adams' model is applied to generate the probability and mean of delay of pedestrians non-complying with traffic law.Using the section-based traffic queuing-theory and the stochastic decomposition property of M/G/1vacation system with exhaustive service,the mean delay of vehicles is formulated.A multi-objective optimization model simultaneously minimizing the delays of pedestrians and vehicles during a signal period is proposed.The effects,which several model parameters have on the delays and the optimal solution of the model,are illustrated by numerical examples.
基金supported by the China Scholarship Council and Donghua University Graduate Student Degree Thesis Innovation Fund Project (Grant No. CUSF-DH-D-2013059)
文摘Besides grid-to-vehicle(G2 V) and vehicle-to-grid(V2 G) functions, the battery of an electric vehicle(EV) also has the specific feature of mobility. This means that EVs not only have the potential to utilize the storage of cheap electricity for use in high energy price periods, but can also transfer energy from one place to another place. Based on these special features of an EV battery, a new EV energy scheduling method has been developed and is described in this article. The approach is aimed at optimizing the utilization EV energy for EVs that are regularly used in multiple places. The objective is to minimize electricity costs from multiple meter points. This work applies real data in order to analyze the effectiveness of the method. The results show that by applying the control strategy presented in this paper at locations where the EVs are parked, the electricity cost can be reduced without shifting the demand and lowering customer's satisfaction. The effects of PV size and number of EVs on our model are also analyzed in this paper. This model has the potential to be used by energy system designers as a new perspective to determine optimal sizes of generators or storage devices in energy systems.